27 research outputs found
Interaction corrections to the Hall coefficient at intermediate temperatures
We investigate the effect of electron-electron interaction on the temperature
dependence of the Hall coefficient of 2D electron gas at arbitrary relation
between the temperature and the elastic mean-free time . At small
temperature we reproduce the known relation between the
logarithmic temperature dependences of the Hall coefficient and of the
longitudinal conductivity. At higher temperatures, this relation is violated
quite rapidly; correction to the Hall coefficient becomes whereas
the longitudinal conductivity becomes linear in temperature.Comment: 4 pages, 3 .eps figure
Crossover from Poisson to Wigner-Dyson Level Statistics in Spin Chains with Integrability Breaking
We study numerically the evolution of energy-level statistics as an
integrability-breaking term is added to the XXZ Hamiltonian. For finite-length
chains, physical properties exhibit a cross-over from behavior resulting from
the Poisson level statistics characteristic of integrable models to behavior
corresponding to the Wigner-Dyson statistics characteristic of the
random-matrix theory used to describe chaotic systems. Different measures of
the level statistics are observed to follow different crossover patterns. The
range of numerically accessible system sizes is too small to establish with
certainty the scaling with system size, but the evidence suggests that in a
thermodynamically large system an infinitesimal integrability breaking would
lead to Wigner-Dyson behavior.Comment: 8 pages, 8 figures, Revtex
Effects of anisotropic spin-exchange interactions in spin ladders
We investigate the effects of the Dzialoshinskii-Moriya (DM) and
Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions on various
thermodynamic and magnetic properties of a spin 1/2 ladder. Using the Majorana
fermion representation, we derive the spectrum of low energy excitations for a
pure DM interaction and in presence of a superimposed KSEA interaction. We
calculate the various correlation functions for both cases and discuss how they
are modified with respect to the case of an isotropic ladder. We also discuss
the electron spin resonance (ESR) spectrum of the system and show that it is
strongly influenced by the orientation of the magnetic field with respect to
the Dzialoshinskii-Moriya vector. Implications of our calculations for NMR and
ESR experiments on ladder systems are discussed.Comment: 14 pages, 4 eps figures, corrected calculation of NMR rate (v3
Interaction corrections at intermediate temperatures: dephasing time
We calculate the temperature dependence of the weak localization correction
in a two dimensional system at arbitrary relation between temperature, and
the elastic mean free time. We describe the crossover in the dephasing time
between the high temperature, ,
and the low temperature behaviors. The prefactors in
these dependences are not universal, but are determined by the Fermi liquid
constant characterising the spin exchange interaction.Comment: 4 pages, to appear in PRB, minor errors corrected, added reference
Finite size effects on transport coefficients for models of atomic wires coupled to phonons
We consider models of quasi-1-d, planar atomic wires consisting of several,
laterally coupled rows of atoms, with mutually non-interacting electrons. This
electronic wire system is coupled to phonons, corresponding, e.g., to some
substrate. We aim at computing diffusion coefficients in dependence on the wire
widths and the lateral coupling. To this end we firstly construct a numerically
manageable linear collision term for the dynamics of the electronic occupation
numbers by following a certain projection operator approach. By means of this
collision term we set up a linear Boltzmann equation. A formula for extracting
diffusion coefficients from such Boltzmann equations is given. We find in the
regime of a few atomic rows and intermediate lateral coupling a significant and
non-trivial dependence of the diffusion coefficient on both, the width and the
lateral coupling. These results, in principle, suggest the possible
applicability of such atomic wires as electronic devices, such as, e.g.,
switches.Comment: 9 pages, 5 figures, accepted for publication in Eur. Phys. J.
Mesoscopic fluctuations of Coulomb drag between quasi-ballistic 1D-wires
Quasiballistic 1D quantum wires are known to have a conductance of the order
of 2e^2/h, with small sample-to-sample fluctuations. We present a study of the
transconductance G_12 of two Coulomb-coupled quasiballistic wires, i.e., we
consider the Coulomb drag geometry. We show that the fluctuations in G_12
differ dramatically from those of the diagonal conductance G_ii: the
fluctuations are large, and can even exceed the mean value, thus implying a
possible reversal of the induced drag current. We report extensive numerical
simulations elucidating the fluctuations, both for correlated and uncorrelated
disorder. We also present analytic arguments, which fully account for the
trends observed numerically.Comment: 10 pages including 7 figures. Minor changes according to referee
report. Accepted for PR
Spin magnetization of strongly correlated electron gas confined in a two-dimensional finite lattice
The influence of disorder and interaction on the ground state polarization of
the two-dimensional (2D) correlated electron gas is studied by numerical
investigations of unrestricted Hartree-Fock equations. The ferromagnetic ground
state is found to be plausible when the electron number is lowered and the
interaction and disorder parameters are suitably chosen. For a finite system at
constant electronic density the disorder induced spin polarization is cut off
when the electron orbitals become strongly localized to the individual network
sites. The fluctuations of the interaction matrix elements are calculated and
brought out as favoring the ferromagnetic instability in the extended and weak
localization regime. The localization effect of the Hubbard interaction term is
discussed.Comment: 7 pages, 9 figure
Nondissipative Drag Conductance as a Topological Quantum Number
We show in this paper that the boundary condition averaged nondissipative
drag conductance of two coupled mesoscopic rings with no tunneling, evaluated
in a particular many-particle eigenstate, is a topological invariant
characterized by a Chern integer. Physical implications of this observation are
discussed.Comment: 4 pages, no figure. Title modified and significant revision made to
the text. Final version appeared in PR
Electrons in an annealed environment: A special case of the interacting electron problem
The problem of noninteracting electrons in the presence of annealed magnetic
disorder, in addition to nonmagnetic quenched disorder, is considered. It is
shown that the proper physical interpretation of this model is one of electrons
interacting via a potential that is long-ranged in time, and that its technical
analysis by means of renormalization group techniques must also be done in
analogy to the interacting problem. As a result, and contrary to previous
claims, the model does not simply describe a metal-insulator transition in
() dimensions. Rather, it describes a transition
to a ferromagnetic state that, as a function of the disorder, precedes the
metal-insulator transition close to . In , a transition from a
paramagnetic metal to a paramagnetic insulator is possible.Comment: 13 pp., LaTeX, 2 eps figs; final version as publishe
Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation
We develop a theory for describing frictional drag in bilayer systems with
in-plane periodic potential modulations, and use it to investigate the drag
between bilayer systems in which one of the layers is modulated in one
direction. At low temperatures, as the density of carriers in the modulated
layer is changed, we show that the transresistivity component in the direction
of modulation can change its sign. We also give a physical explanation for this
behavior.Comment: 4 pages, 4 figure