1,142 research outputs found
Laboratory exploration of mineral precipitates from Europa's subsurface ocean
The precipitation of hydrated phases from a chondritic-like Na-Mg-Ca-SO4-Cl solution is studied using in situ synchrotron X-ray powder diffraction, under rapid (360
K hour−1, T = 250-80 K, t = 3 hours) and ultra-slow (0.3 K day−1, T= 273-245K, t = 242 days) freezing conditions. The precipitation sequence under slow cooling initially follows the predictions of equilibrium thermodynamics models, however after ∼ 50 days at 245 K, the formation of the highly hydrated sulphate phase Na2Mg(SO4)2·16H2O, a relatively recent discovery in the Na2Mg(SO4)2-H2O system, was observed. Rapid freezing, on the other hand, produced an assemblage of multiple phases which formed within a very short timescale (≤4 minutes, ∆T = 2 K) and, although remaining present throughout, varied in their relative proportions with
decreasing temperature. Mirabilite and meridianiite were the major phases, with pentahydrite, epsomite, hydrohalite, gypsum, bl¨odite, konyaite and loweite also observed. Na2Mg(SO4)2·16H2O was again found to be present and increased in proportion relative to other phases as the temperature decreased. Results are discussed in relation to possible implications for life on Europa and application to other icy ocean worlds
Chandra Monitoring of the Candidate Anomalous X-ray Pulsar AX J1845.0-0258
The population of clearly identified anomalous X-ray pulsars has recently
grown to seven, however, one candidate anomalous X-ray pulsar (AXP) still
eludes re-confirmation. Here, we present a set of seven Chandra ACIS-S
observations of the transient pulsar AX J1845.0-0258, obtained during 2003. Our
observations reveal a faint X-ray point source within the ASCA error circle of
AX J1845.0-0258's discovery, which we designate CXOU J184454.6-025653 and
tentatively identify as the quiescent AXP. Its spectrum is well described by an
absorbed single-component blackbody (kT~2.0 keV) or power law (Gamma~1.0) that
is steady in flux on timescales of at least months, but fainter than AX
J1845.0-0258 was during its 1993 period of X-ray enhancement by at least a
factor of 13. Compared to the outburst spectrum of AX J1845.0-0258, CXOU
J184454.6-025653 is considerably harder: if truly the counterpart, then its
spectral behaviour is contrary to that seen in the established transient AXP
XTE J1810-197, which softened from kT~0.67 keV to ~0.18 keV in quiescence. This
unexpected result prompts us to examine the possibility that we have observed
an unrelated source, and we discuss the implications for AXPs, and magnetars in
general.Comment: 4 pages, 3 figures. To be published in the proceedings of the
conference "Isolated Neutron Stars: from the Interior to the Surface" (April
24-28, 2006, London, UK), eds. D. Page, R. Turolla, & S. Zan
Geographic variation in Sundew (Drosera ) leaf colour: plant-plant interactions counteract expected effects of abiotic factors
Aim To identify geographic patterns in leaf colour of roundleaved sundew (Drosera rotundifolia) growing on ombrotrophic (rain fed) bogs across Europe and establish the controls over these patterns. Location North-west Europe. Taxon Angiosperms, Drosera rotundifolia. Methods We measured leaf colour of D. rotundifolia plants growing on 24 ombrotrophic bogs across north-west Europe covering 26.4 degrees of longitude and 21.1 degrees of latitude. We measured the height and cover of co-occurring vascular plant vegetation and the amount of incident light intercepted by the vegetation canopy. We determined the role of abiotic variables in controlling the patterns found. In a separate experimental study, we manipulated plant–plant interactions with D. rotundifolia by removing aboveground vascular plant vegetation and monitoring leaf colour over a single summer. Results Drosera rotundifolia leaf colour varied between bogs. Leaves were redder in northern latitudes and eastern longitudes, and in sites/plots with lower canopy influence, lower nutrient deposition, and a more continental climate. Canopy influence was greater on sites in southern latitudes, eastern longitudes, and with higher nutrient deposition, longer growing seasons and a more maritime climate. Nutrient deposition was higher at more southerly latitudes, eastern sites had a more continental climate, and southern and western sites had warmer and longer growing seasons. In the in situ experiment, leaves became more red when canopy light transmission was increased by removing vegetation, but not when shade net was subsequently added to reduce light transmission. Main Conclusion Geographic variation in Drosera rotundifolia leaf colour is strongly affected by its light environment, mediated by plant–plant interactions, but leaf colour is also affected by other abiotic factors. The relative importance of biotic and abiotic factors in determining geographic patterns in traits, and also species responses to environmental change, might depend on the growth form and competitive ability of a species
Gaussian quantum marginal problem
The quantum marginal problem asks what local spectra are consistent with a
given spectrum of a joint state of a composite quantum system. This setting,
also referred to as the question of the compatibility of local spectra, has
several applications in quantum information theory. Here, we introduce the
analogue of this statement for Gaussian states for any number of modes, and
solve it in generality, for pure and mixed states, both concerning necessary
and sufficient conditions. Formally, our result can be viewed as an analogue of
the Sing-Thompson Theorem (respectively Horn's Lemma), characterizing the
relationship between main diagonal elements and singular values of a complex
matrix: We find necessary and sufficient conditions for vectors (d1, ..., dn)
and (c1, ..., cn) to be the symplectic eigenvalues and symplectic main diagonal
elements of a strictly positive real matrix, respectively. More physically
speaking, this result determines what local temperatures or entropies are
consistent with a pure or mixed Gaussian state of several modes. We find that
this result implies a solution to the problem of sharing of entanglement in
pure Gaussian states and allows for estimating the global entropy of
non-Gaussian states based on local measurements. Implications to the actual
preparation of multi-mode continuous-variable entangled states are discussed.
We compare the findings with the marginal problem for qubits, the solution of
which for pure states has a strikingly similar and in fact simple form.Comment: 18 pages, 1 figure, material added, references updated, except from
figure identical with version to appear in Commun. Math. Phy
Magnetar outbursts: an observational review
Transient outbursts from magnetars have shown to be a key property of their
emission, and one of the main way to discover new sources of this class. From
the discovery of the first transient event around 2003, we now count about a
dozen of outbursts, which increased the number of these strongly magnetic
neutron stars by a third in six years. Magnetar outbursts might involve their
multi-band emission resulting in an increased activity from radio to hard
X-ray, usually with a soft X-ray flux increasing by a factor of 10-1000 with
respect to the quiescent level. A connected X-ray spectral evolution is also
often observed, with a spectral softening during the outburst decay. The flux
decay times vary a lot from source to source, ranging from a few weeks to
several years, as also the decay law which can be exponential-like, a power-law
or even multiple power-laws can be required to model the flux decrease. We
review here on the latest observational results on the multi-band emission of
magnetars, and summarize one by one all the transient events which could be
studied to date from these sources.Comment: 34 pages, 6 figures. Chapter of the Springer Book ASSP 7395
"High-energy emission from pulsars and their systems", proceeding of the Sant
Cugat Forum on Astrophysics (12-16 April 2010). Review updated to January
201
Newborn Magnetars as sources of Gravitational Radiation: constraints from High Energy observations of Magnetar Candidates
Soft Gamma Repeaters and the Anomalous X-ray Pulsars are believed to contain
slowly spinning "magnetars". The enormous energy liberated in the 2004 Dece 27
giant flare from SGR 1806-20, together with the likely recurrence time of such
events, points to an internal magnetic field strength ~ 10^{16} G. Such strong
fields are expected to be generated by a coherent alpha-Omega dynamo in the
early seconds after the Neutron Star formation, if its spin period is of a few
milliseconds at most. A substantial deformation of the NS is caused by such
fields and a newborn millisecond-spinning magnetar would thus radiate for a few
days a strong gravitational wave signal. Such a signal may be detected with
Advanced LIGO-class detectors up to the distance of the Virgo cluster, where ~
1 magnetar per year are expected to form. Recent X-ray observations reveal that
SNRs around magnetar candidates do not show evidence for a larger energy
content than standard SNRs (Vink & Kuiper 2006). This is at variance with what
would be expected if the spin energy of the young, millisecond NS were radiated
away as electromagnetic radiation andd/or relativistic particle winds and,
thus, transferred quickly to the expanding gas shell. We show here that these
recent findings can be reconciled with the idea of magnetars being formed with
fast spins, if most of their initial spin energy is radiated thorugh GWs. In
particular, we find that this occurs for essentially the same parameter range
that would make such objects detectable by Advanced LIGO-class detectors up to
the Virgo Cluster.Comment: Proceedings of the Conference "Isolated Neutron stars: from the
interior to the surface", Eds. D. Page, R. Turolla, S. Zan
The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays
For the first time a quasi-simultaneous multi-wavelength campaign has been
performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band.
4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these
observations it was also observed in the X-ray band with Swift and RXTE, in the
optical and NIR with Gemini North and in the radio with the WSRT. In this paper
we present the source-energy distribution. The spectral results obtained in the
individual wave bands do not connect smoothly; apparently components of
different origin contribute to the total spectrum. Remarkable is that the
INTEGRAL hard X-ray spectrum (power-law index 0.79 +/- 0.10) is now measured up
to an energy of ~230 keV with no indication of a spectral break. Extrapolation
of the INTEGRAL power-law spectrum to lower energies passes orders of magnitude
underneath the NIR and optical fluxes, as well as the low ~30 microJy (2 sigma)
upper limit in the radio band.Comment: 6 pages, 1 figure. To be published in the proceedings of the
conference "Isolated Neutron Stars: from the Interior to the Surface" (April
24-28, 2006, London, UK), eds. S. Zane, R. Turolla and D. Pag
The public health and economic benefits of taxing sugar-sweetened beverages
Consumption of sugar-sweetened beverages has increased in recent decades; evidence suggests that consumption of these beverages contributes to obesity and adverse health outcomes. The authors discuss the potential public health and economic benefits of taxing sugar-sweetened beverages
Radiative β decay of the free neutron
The theory of quantum electrodynamics predicts that the β decay of the neutron into a proton, electron, and antineutrino is accompanied by a continuous spectrum of emitted photons described as inner bremsstrahlung. While this phenomenon has been observed in nuclear β decay and electron-capture decay for many years, it has only been recently observed in free-neutron decay. We present a detailed discussion of an experiment in which the radiative decay mode of the free neutron was observed. In this experiment, the branching ratio for this rare decay was determined by recording photons that were correlated with both the electron and proton emitted in neutron decay. We determined the branching ratio for photons with energy between 15 and 340 keV to be (3.09±0.32)×10-3 (68% level of confidence), where the uncertainty is dominated by systematic effects. This value for the branching ratio is consistent with theoretical predictions. The characteristic energy spectrum of the radiated photons, which differs from the uncorrelated background spectrum, is also consistent with the theoretical spectrum
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
- …