97 research outputs found
The Milky Way Bulge: Observed properties and a comparison to external galaxies
The Milky Way bulge offers a unique opportunity to investigate in detail the
role that different processes such as dynamical instabilities, hierarchical
merging, and dissipational collapse may have played in the history of the
Galaxy formation and evolution based on its resolved stellar population
properties. Large observation programmes and surveys of the bulge are providing
for the first time a look into the global view of the Milky Way bulge that can
be compared with the bulges of other galaxies, and be used as a template for
detailed comparison with models. The Milky Way has been shown to have a
box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an
additional spheroidal component. In this review we summarise the global
chemical abundances, kinematics and structural properties that allow us to
disentangle these multiple components and provide constraints to understand
their origin. The investigation of both detailed and global properties of the
bulge now provide us with the opportunity to characterise the bulge as observed
in models, and to place the mixed component bulge scenario in the general
context of external galaxies. When writing this review, we considered the
perspectives of researchers working with the Milky Way and researchers working
with external galaxies. It is an attempt to approach both communities for a
fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen
E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV
The PHENIX experiment has measured mid-rapidity transverse momentum spectra
(0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au
collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and
from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were
removed. The resulting non-photonic electron spectra are primarily due to the
semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification
factors were determined by comparison to non-photonic electrons in p+p
collisions. A significant suppression of electrons at high p_T is observed in
central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of Transverse Single-Spin Asymmetries for Mid-rapidity Production of Neutral Pions and Charged Hadrons in Polarized p+p Collisions at sqrt(s) = 200 GeV
The transverse single-spin asymmetries of neutral pions and non-identified
charged hadrons have been measured at mid-rapidity in polarized proton-proton
collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T)
range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at
a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this
previously unexplored kinematic region are consistent with zero within
statistical errors of a few percent. In addition, the inclusive charged hadron
cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and
compared to NLO pQCD calculations. Successful description of the unpolarized
cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in
the interpretation of the asymmetry results in the relevant kinematic range.Comment: 331 authors, 6 pages text, 2 figures, 3 tables. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Oxygen abundance in local disk and bulge: chemical evolution with a strictly universal IMF
The empirical differential oxygen abundance distribution (EDOD) is deduced
from subsamples related to two different samples involving solar neighbourhood
(SN) thick disk, thin disk, halo, and bulge stars. The EDOD of the SN thick +
thin disk is determined by weighting the mass, for assumed SN thick to thin
disk mass ratio within the range, 0.1-0.9. Inhomogeneous models of chemical
evolution for the SN thick disk, the SN thin disk, the SN thick + thin disk,
the SN halo, and the bulge, are computed assuming the instantaneous recycling
approximation. The EDOD data are fitted, to an acceptable extent, by their TDOD
counterparts provided (i) still undetected, low-oxygen abundance thin disk
stars exist, and (ii) a single oxygen overabundant star is removed from a thin
disk subsample. In any case, the (assumed power-law) stellar initial mass
function (IMF) is universal but gas can be inhibited from, or enhanced in,
forming stars at different rates with respect to a selected reference case.
Models involving a strictly universal IMF (i.e. gas neither inhibited from, nor
enhanced in, forming stars with respect to a selected reference case) can also
reproduce the data. The existence of a strictly universal IMF makes similar
chemical enrichment within active (i.e. undergoing star formation) regions
placed in different environments, but increasing probability of a region being
active passing from SN halo to SN thick + thin disk, SN thin disk, SN thick
disk, and bulge. On the basis of the results, it is realized that the chemical
evolution of the SN thick + thin disk as a whole cannot be excluded.Comment: 26 pages, 10 tables, and 5 figures; tables out of page are splitted
in two parts in Appendix B; sects.4 and 5 rewritten for better understanding
of the results; further references added. Accepted for publication in
Astrophysics & Space Scienc
- …