27 research outputs found

    Just married: the synergy between feminist criminology and the Tripartite Cybercrime Framework

    Get PDF
    This article is a theoretical treatment of feminist epistemology of crime, which advocates the centrality of gender as a theoretical starting point for the investigating of digital crimes. It does so by exploring the synergy between the feminist perspectives and the Tripartite Cybercrime Framework (TCF) (which argues that three possible factors motivate cybercrimes – socioeconomic, psychosocial, and geopolitical) to critique mainstream criminology and the meaning of the term “cybercrime”. Additionally, the article examines gender gaps in online harassment, cyber‐bullying, cyber‐fraud, revenge porn, and cyber‐stalking to demonstrate that who is victimised, why, and to what effect are the critical starting points for the analysis of the connections between gender and crimes. In turn, it uses the lens of intersectionality to acknowledge that, while conceptions of gender and crime interact, they intersect with other categories (e.g., sexuality) to provide additional layers of explanation. To nuance the utilitarian value of the synergy between the TCF and the feminist perspectives, the focus shifts to a recent case study (which compared socioeconomic and psychosocial cybercrimes). The article concludes that, while online and offline lives are inextricably intertwined, the victimisations in psychosocial cybercrimes may be more gendered than in socioeconomic cybercrimes. These contributions align the TCF to the feminist epistemology of crime in their attempt to move gender analysis of digital crimes “from margin to centre”

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
    corecore