6 research outputs found

    On the growth of perturbations in interacting dark energy and dark matter fluids

    Full text link
    The covariant generalizations of the background dark sector coupling suggested in G. Mangano, G. Miele and V. Pettorino, Mod. Phys. Lett. A 18, 831 (2003) are considered. The evolution of perturbations is studied with detailed attention to interaction rate that is proportional to the product of dark matter and dark energy densities. It is shown that some classes of models with coupling of this type do not suffer from early time instabilities in strong coupling regime.Comment: 11 pages, 2 figures. v3: minor changes, typos fixe

    Neutralino Pair Production and 3-Body Decays at e+ee^+e^- Linear Colliders as Probes of CP Violation in the Neutralino System

    Full text link
    In the CP-invariant supersymmetric theories, the steep S-wave (slow P-wave) rise of the cross section for any non-diagonal neutralino pair production in e+ee^+ e^- annihilation, e+eχ~i0χ~j0e^+e^- \to \tilde{\chi}^0_i \tilde{\chi}^0_j (iji \neq j), near threshold is accompanied by the slow P-wave (steep S-wave) decrease of the fermion invariant mass distribution of the 3-body neutralino decay, χ~i0χ~j0ffˉ\tilde{\chi}^0_i \to \tilde{\chi}^0_j f\bar{f} (f=lf=l or qq), near the end point. These selection rules, unique to the neutralino system due to its Majorana nature, guarantee that the observation of simultaneous sharp S-wave excitations of the production cross section near threshold and the lepton and quark invariant mass distribution near the end point is a qualitative, unambiguous evidence for CP violation in the neutralino system.Comment: 11 pages, 1 eps figure, a reference adde

    Stability of curvature perturbation with new covariant form for energy-momentum transfer in dark sector

    Full text link
    It was found that the model with interaction between cold dark matter (CDM) and dark energy (DE) proportional to the energy density of CDM ρm\rho_m and constant equation of state of DE wdw_d suffered from instabilities of the density perturbations on the supper-Hubble scales. Here we suggest a new covariant model for the energy-momentum transfer between CDM and DE. Then using the covariant model, we analyze the evolution of density perturbations on the supper-Hubble scale. We find that the instabilities can be avoided in the model with constant wdw_d and interaction proportional to ρm\rho_m. Furthermore, we analyze the dominant non-adiabatic mode in the radiation era and find that the mode grows regularly.Comment: 12 pages, 2 figure
    corecore