57 research outputs found
Application of energy and angular momentum balance to gravitational radiation reaction for binary systems with spin-orbit coupling
We study gravitational radiation reaction in the equations of motion for
binary systems with spin-orbit coupling, at order (v/c)^7 beyond Newtonian
gravity, or O(v/c)^2 beyond the leading radiation reaction effects for
non-spinning bodies. We use expressions for the energy and angular momentum
flux at infinity that include spin-orbit corrections, together with an
assumption of energy and angular momentum balance, to derive equations of
motion that are valid for general orbits and for a class of coordinate gauges.
We show that the equations of motion are compatible with those derived earlier
by a direct calculation.Comment: 12 pages, submitted to General Relativity and Gravitatio
Innermost circular orbit of binary black holes at the third post-Newtonian approximation
The equations of motion of two point masses have recently been derived at the
3PN approximation of general relativity. From that work we determine the
location of the innermost circular orbit or ICO, defined by the minimum of the
binary's 3PN energy as a function of the orbital frequency for circular orbits.
We find that the post-Newtonian series converges well for equal masses. Spin
effects appropriate to corotational black-hole binaries are included. We
compare the result with a recent numerical calculation of the ICO in the case
of two black holes moving on exactly circular orbits (helical symmetry). The
agreement is remarkably good, indicating that the 3PN approximation is adequate
to locate the ICO of two black holes with comparable masses. This conclusion is
reached with the post-Newtonian expansion expressed in the standard Taylor
form, without using resummation techniques such as Pad\'e approximants and/or
effective-one-body methods.Comment: 21 pages, to appear in Phys. Rev. D (spin effects appropriate to
corotational black-hole binaries are included; discussion on the validity of
the approximation is added
The non-random walk of stock prices: The long-term correlation between signs and sizes
We investigate the random walk of prices by developing a simple model
relating the properties of the signs and absolute values of individual price
changes to the diffusion rate (volatility) of prices at longer time scales. We
show that this benchmark model is unable to reproduce the diffusion properties
of real prices. Specifically, we find that for one hour intervals this model
consistently over-predicts the volatility of real price series by about 70%,
and that this effect becomes stronger as the length of the intervals increases.
By selectively shuffling some components of the data while preserving others we
are able to show that this discrepancy is caused by a subtle but long-range
non-contemporaneous correlation between the signs and sizes of individual
returns. We conjecture that this is related to the long-memory of transaction
signs and the need to enforce market efficiency.Comment: 9 pages, 5 figures, StatPhys2
Newborn Magnetars as sources of Gravitational Radiation: constraints from High Energy observations of Magnetar Candidates
Soft Gamma Repeaters and the Anomalous X-ray Pulsars are believed to contain
slowly spinning "magnetars". The enormous energy liberated in the 2004 Dece 27
giant flare from SGR 1806-20, together with the likely recurrence time of such
events, points to an internal magnetic field strength ~ 10^{16} G. Such strong
fields are expected to be generated by a coherent alpha-Omega dynamo in the
early seconds after the Neutron Star formation, if its spin period is of a few
milliseconds at most. A substantial deformation of the NS is caused by such
fields and a newborn millisecond-spinning magnetar would thus radiate for a few
days a strong gravitational wave signal. Such a signal may be detected with
Advanced LIGO-class detectors up to the distance of the Virgo cluster, where ~
1 magnetar per year are expected to form. Recent X-ray observations reveal that
SNRs around magnetar candidates do not show evidence for a larger energy
content than standard SNRs (Vink & Kuiper 2006). This is at variance with what
would be expected if the spin energy of the young, millisecond NS were radiated
away as electromagnetic radiation andd/or relativistic particle winds and,
thus, transferred quickly to the expanding gas shell. We show here that these
recent findings can be reconciled with the idea of magnetars being formed with
fast spins, if most of their initial spin energy is radiated thorugh GWs. In
particular, we find that this occurs for essentially the same parameter range
that would make such objects detectable by Advanced LIGO-class detectors up to
the Virgo Cluster.Comment: Proceedings of the Conference "Isolated Neutron stars: from the
interior to the surface", Eds. D. Page, R. Turolla, S. Zan
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Mapping and characterization of structural variation in 17,795 human genomes
A key goal of whole-genome sequencing for studies of human genetics is to interrogate all forms of variation, including single-nucleotide variants, small insertion or deletion (indel) variants and structural variants. However, tools and resources for the study of structural variants have lagged behind those for smaller variants. Here we used a scalable pipeline1 to map and characterize structural variants in 17,795 deeply sequenced human genomes. We publicly release site-frequency data to create the largest, to our knowledge, whole-genome-sequencing-based structural variant resource so far. On average, individuals carry 2.9 rare structural variants that alter coding regions; these variants affect the dosage or structure of 4.2 genes and account for 4.0–11.2% of rare high-impact coding alleles. Using a computational model, we estimate that structural variants account for 17.2% of rare alleles genome-wide, with predicted deleterious effects that are equivalent to loss-of-function coding alleles; approximately 90% of such structural variants are noncoding deletions (mean 19.1 per genome). We report 158,991 ultra-rare structural variants and show that 2% of individuals carry ultra-rare megabase-scale structural variants, nearly half of which are balanced or complex rearrangements. Finally, we infer the dosage sensitivity of genes and noncoding elements, and reveal trends that relate to element class and conservation. This work will help to guide the analysis and interpretation of structural variants in the era of whole-genome sequencing
Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
- …