296 research outputs found
Tunneling ``zero-bias'' anomaly in the quasi-ballistic regime
For the first time, we study the tunneling density of states (DOS) of the
interacting electron gas beyond the diffusive limit. A strong correction to the
DOS persists even at electron energies exceeding the inverse transport
relaxation time, which could not be expected from the well-known
Altshuler-Aronov-Lee (AAL) theory. This correction originates from the
interference between the electron waves scattered by an impurity and by the
Friedel oscillation this impurity creates. Account for such processes also
revises the AAL formula for the DOS in the diffusive limit.Comment: 4 pages, 2 .eps figures, submitted to Phys. Rev. Let
Carbon clusters near the crossover to fullerene stability
The thermodynamic stability of structural isomers of ,
, and , including
fullerenes, is studied using density functional and quantum Monte Carlo
methods. The energetic ordering of the different isomers depends sensitively on
the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo
calculations predict that a isomer is the smallest stable
graphitic fragment and that the smallest stable fullerenes are the
and clusters with and
symmetry, respectively. These results support proposals that a
solid could be synthesized by cluster deposition.Comment: 4 pages, includes 4 figures. For additional graphics, online paper
and related information see http://www.tcm.phy.cam.ac.uk/~prck
Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd
Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described
Collisional equilibrium, particle production and the inflationary universe
Particle production processes in the expanding universe are described within
a simple kinetic model. The equilibrium conditions for a Maxwell-Boltzmann gas
with variable particle number are investigated. We find that radiation and
nonrelativistic matter may be in equilibrium at the same temperature provided
the matter particles are created at a rate that is half the expansion rate.
Using the fact that the creation of particles is dynamically equivalent to a
nonvanishing bulk pressure we calculate the backreaction of this process on the
cosmological dynamics. It turns out that the `adiabatic' creation of massive
particles with an equilibrium distribution for the latter necessarily implies
power-law inflation. Exponential inflation in this context is shown to become
inconsistent with the second law of thermodynamics after a time interval of the
order of the Hubble time.Comment: 19 pages, latex, no figures, to appear in Phys.Rev.
Cosmological particle production, causal thermodynamics, and inflationary expansion
Combining the equivalence between cosmological particle creation and an
effective viscous fluid pressure with the fact that the latter represents a
dynamical degree of freedom within the second-order Israel-Stewart theory for
imperfect fluids, we reconsider the possibility of accelerated expansion in
fluid cosmology. We find an inherent self-limitation for the magnitude of an
effective bulk pressure which is due to adiabatic (isentropic) particle
production. For a production rate which depends quadratically on the Hubble
rate we confirm the existence of solutions which describe a smooth transition
from inflationary to noninflationary behavior and discuss their interpretation
within the model of a decaying vacuum energy density. An alternative
formulation of the effective imperfect fluid dynamics in terms of a minimally
coupled scalar field is given. The corresponding potential is discussed and an
entropy equivalent for the scalar field is found.Comment: 16 pages, revtex file, submitted to Phys. Rev.
Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable
The behavior of magnetic field in plane symmetric inhomogeneous cosmological
models for bulk viscous distribution is investigated. The coefficient of bulk
viscosity is assumed to be a power function of mass density . The values of cosmological constant for these models are
found to be small and positive which are supported by the results from recent
supernovae Ia observations. Some physical and geometric aspects of the models
are also discussed.Comment: 18 pages, LaTex, no figur
Observation of exclusive DVCS in polarized electron beam asymmetry measurements
We report the first results of the beam spin asymmetry measured in the
reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry
with a sin(phi) modulation is observed, as predicted for the interference term
of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The
amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and
leading-twist pQCD, the alpha is directly proportional to the imaginary part of
the DVCS amplitude.Comment: 6 pages, 5 figure
Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV
The three-body photodisintegration of 3He has been measured with the CLAS
detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV
and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first
time to cover a wide momentum and angular range for the two outgoing protons.
Three kinematic regions dominated by either two- or three-body contributions
have been distinguished and analyzed. The measured cross sections have been
compared with results of a theoretical model, which, in certain kinematic
ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications:
removed 2 figures, improvements on others, a few minor modifications to the
tex
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Fissure Seal or Fluoride Varnish? A Randomized Trial of Relative Effectiveness
Fissure sealant (FS) and fluoride varnish (FV) are effective in preventing dental caries when compared with a no-treatment control. However, the relative clinical effectiveness of these interventions is uncertain. The objective of the study was to compare the clinical effectiveness of FS and FV in preventing dental caries in first permanent molars (FPMs) in 6- to 7-y-olds. The study design was a randomized clinical trial, with 2 parallel arms. The setting was a targeted-population program that used mobile dental clinics in schools located within areas of high social and economic deprivation in South Wales. A total of 1,016 children were randomized 1:1 to receive either FS or FV. Resin-based FS was applied to caries-free FPMs and maintained at 6-mo intervals. FV was applied at baseline and at 6-mo intervals for 3 y. The main outcome measures were the proportion of children developing caries into dentine (D4-6MFT) on any 1 of up to 4 treated FPMs after 36 mo. At 36 mo, 835 (82%) children remained: 417 in the FS arm and 418 in the FV arm. A smaller proportion of children who received FV (n = 73, 17.5%) versus FS (n = 82, 19.6%) developed caries into dentine on at least 1 FPM (odds ratio [OR] = 0.84; 95% CI, 0.59 to 1.21; P = 0.35), a nonstatistically significant difference between FS and FV treatments. The results were similar when the number of newly decayed teeth (OR = 0.86; 95% CI, 0.60 to 1.22) and tooth surfaces (OR = 0.85; 95% CI, 0.59 to 1.21) were examined. In a community oral health program, semiannual application of FV resulted in caries prevention that was not significantly different from that obtained by applying and maintaining FS after 36 mo (EudraCT: 2010-023476-23; ISRCTN: ISRCTN17029222)
- …