29 research outputs found
Deconstructing Decoherence
The study of environmentally induced superselection and of the process of
decoherence was originally motivated by the search for the emergence of
classical behavior out of the quantum substrate, in the macroscopic limit. This
limit, and other simplifying assumptions, have allowed the derivation of
several simple results characterizing the onset of environmentally induced
superselection; but these results are increasingly often regarded as a complete
phenomenological characterization of decoherence in any regime. This is not
necessarily the case: The examples presented in this paper counteract this
impression by violating several of the simple ``rules of thumb''. This is
relevant because decoherence is now beginning to be tested experimentally, and
one may anticipate that, in at least some of the proposed applications (e.g.,
quantum computers), only the basic principle of ``monitoring by the
environment'' will survive. The phenomenology of decoherence may turn out to be
significantly different.Comment: 13 two-column pages, 3 embedded figure
Environment-Induced Decoherence and the Transition From Quantum to Classical
We study dynamics of quantum open systems, paying special attention to those
aspects of their evolution which are relevant to the transition from quantum to
classical. We begin with a discussion of the conditional dynamics of simple
systems. The resulting models are straightforward but suffice to illustrate
basic physical ideas behind quantum measurements and decoherence. To discuss
decoherence and environment-induced superselection einselection in a more
general setting, we sketch perturbative as well as exact derivations of several
master equations valid for various systems. Using these equations we study
einselection employing the general strategy of the predictability sieve.
Assumptions that are usually made in the discussion of decoherence are
critically reexamined along with the ``standard lore'' to which they lead.
Restoration of quantum-classical correspondence in systems that are classically
chaotic is discussed. The dynamical second law -it is shown- can be traced to
the same phenomena that allow for the restoration of the correspondence
principle in decohering chaotic systems (where it is otherwise lost on a very
short time-scale). Quantum error correction is discussed as an example of an
anti-decoherence strategy. Implications of decoherence and einselection for the
interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the
72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199
Recommended from our members
Track A Basic Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138319/1/jia218438.pd
Measurement of the Îœe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set
This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)Ă106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Îm2=7.59-0.21+0.19Ă10 -5eV2 and Ξ=34.4-1.2+1.3degrees
Electoral science The analysis of voting systems
SIGLEAvailable from British Library Document Supply Centre- DSC:D179195 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Note discharging a bond to B.L. Lear, 1826 July 12
Signed by James Monroe. Document Signed
The distortion of cardinal preferences in voting
Abstract. The theoretical guarantees provided by voting have distinguished it as a prominent method of preference aggregation among autonomous agents. However, unlike humans, agents usually assign each candidate an exact utility, whereas an election is resolved based solely on each voterâs linear ordering of candidates. In essence, the agents â cardinal (utility-based) preferences are embedded into the space of ordinal preferences. This often gives rise to a distortion in the preferences, and hence in the social welfare of the outcome. In this paper, we formally define and analyze the concept of distortion. We fully characterize the distortion under different restrictions imposed on agentsâ cardinal preferences; both possibility and strong impossibility results are established. We also tackle some computational aspects of calculating the distortion. Ultimately, we argue that, whenever voting is applied in a multiagent system, distortion must be a pivotal consideration.
Parkville virus: a novel genetic variant of human calicivirus in the Sapporo virus clade, associated with an outbreak of gastroenteritis in adults
This report describes the characterization of Parkville virus, the etiologic agent of an outbreak of foodborne gastroenteritis, that has the morphology of a calicivirus and genetic properties that distinguish it from previously identified strains in the Sapporo/Manchester virus clade. Sequence analysis of the Parkville virus genome showed it contained the RNA-dependent RNA polymerase motifs GLPSG and YGDD characteristic of members of the family Caliciviridae with an organization identical to that reported for the Manchester virus where the capsid region of the polyprotein is fused to the RNA polymerase. Parkville virus however, demonstrates considerable sequence divergence from both the Manchester and Sapporo caliciviruses, providing the first indications that genetic diversity exists within caliciviruses of this previously homogeneous clade. On the basis of recent advances in the genetic characterization of members of the family Caliciviridae, we propose a new interim phylogenetic classification system in which Parkville virus would be included with Manchester and Sapporo virus as a separate group distinct from the small round-structured viruses (Norwalk-like viruses) that also cause diarrhea in humans