53 research outputs found

    Aerobic and anaerobic energy expenditure during rest and activity in montane Bufo b. boreas and Rana pipiens

    Full text link
    The relations of standard and active aerobic and anaerobic metabolism and heart rate to body temperature ( T b ) were measured in montane groups of Bufo b. boreas and Rana pipiens maintained under field conditions. These amphibians experience daily variation of T b over 30°C and 23°C, respectively (Carey, 1978). Standard and active aerobic and anaerobic metabolism, heart rate, aerobic and anaerobic scope are markedly temperature-dependent with no broad plateaus of thermal independence. Heart rate increments provide little augmentation of oxygen transport during activity; increased extraction of oxygen from the blood probably contributes importantly to oxygen supply during activity. Development of extensive aerobic capacities in Bufo may be related to aggressive behavior of males during breeding. Standard metabolic rates of both species are more thermally dependent than comparable values for lowland relatives. Thermal sensitivity of physiological functions may have distinct advantages over thermally compensated rates in the short growing season and daily thermal fluctuations of the montane environment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47726/1/442_2004_Article_BF00348070.pd

    The ocean is not deep enough: pressure tolerances during early ontogeny of the blue mussel Mytilus edulis

    No full text
    Early ontogenetic adaptations reflect the evolutionary history of a species. To understand the evolution of the deep-sea fauna and its adaptation to high-pressure, it is important to know the effects of pressure on their shallow-water relatives. In this study we analyse the temperature and pressure tolerances of early life history stages of the shallow-water species Mytilus edulis. This species expresses a close phylogenetic relationship with hydrothermal-vent mussels of the subfamily Bathymodiolinae. Tolerances to pressure and temperature are defined in terms of fertilisation success and embryo developmental rates in laboratory-based experiments. In Mytilus edulis, successful fertilisation under pressure is possible up to 500atm (50.66MPa), at 10 ÂșC, 15 ÂșC and 20 ÂșC. A slower embryonic development is observed with decreasing temperature and with increasing pressure; principally, pressure narrows the physiological tolerance window in different ontogenetic stages of M. edulis, and slows down metabolism. This study provides important clues on possible evolutionary pathways of hydrothermal vent and cold-seep bivalve species and their shallow-water relatives. Evolution and speciation patterns of species derive mostly from their ability to adapt to variable environmental conditions, within environmental constraints, which promote morphological and genetic variability, often differently for each life history stage. The present results support the view that a direct colonisation of deep-water hydrothermal vent environments by a cold-eurythermal shallow-water ancestor is indeed a possible scenario for the Mytilinae, challenging previous hypothesis of a wood/bone to seep/vent colonization pathway
    • 

    corecore