14 research outputs found

    Wear characteristics of PCBN tools in ultra-precision machining of stainless steel at low cutting speeds

    Get PDF
    Polycrystalline cubic boron nitride (PCBN) cutting tools are widely used in the ultra-precision machining of stainless steel mould inserts for the injection moulding of optical lenses. During the machining of a spherical or an aspherical profile on a mould insert, the cutting speed reduces significantly to approximately 0 as the cutting tool is fed towards the centre of the machined profile. This paper will report on experiments carried out to investigate the wear of various grades of PCBN tool in the ultra-precision machining of STAVAX (modified AISI 420 stainless steel) at low speeds. In the initial stage of machining, fine-scale cavities were formed on the rake face and as such, the damaged surface acted like a chip breaker and thus as a preferential site for crack initiation. Once a crack was initiated, it propagated along the grain boundaries leading to intergranular fracture. The experimental results show that the formation and extent of the surface fracture are greatly dependent on the cutting forces and the severity of abrasion on the rake face which are governed by the cutting temperature. The porosity, ductility and the bonding strength of the grains in the tool, apart from its thermal conductivity appear to have major influences on the fracture resistance of the tool

    Wear of CBN tools in ultra-precision machining of STAVAX

    Get PDF
    CBN cutting tools are widely used in ultra-precision machining of STAVAX (specialized stainless steel) mould inserts for injection moulding of optical lenses. This paper will report on experiments carried out to investigate the wear of CBN tools with different grain sizes and various CBN/TiN ratios in ultra-precision machining of STAVAX. The tool-wear characteristics were observed to be greatly dependent on the tool type, hardness of the STAVAX and cutting parameters used. In the machining of STAVAX with a hardness of 55 HRC, fine-scale cavities were formed on the rake face and as such the surface damage acted like a chip breaker resulting in formation of cracks. While the flank faces of all tool types showed a similar wear resistance, it was observed that a combination of a higher percentage of TiN binder and smaller grain size led to greater wear resistance on the rake face. It was found that the formation of cracks on the rake faces could be prevented by means of either increasing the cutting speed or reducing the hardness of the machined workpiec

    Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel

    Get PDF
    Ultra-precision machines are widely used to turn aspherical or spherical profiles on mould inserts for the injection moulding of optical lenses. During the turning of a profile on a stainless steel mould insert, the cutting speed reduces significantly to 0 as the cutting tool is fed towards the centre of the machined profile. This paper reports experiments carried out to study the wear of uncoated and PVD-coated carbide tools (carbide tool coated with 2000 alternate layers of AlN and TiN, each layer 1.5 nm and carbide tool coated with 0.5 μm TiN, 5.5 μm TiCN and 0.5 μm TiN) in the ultra-precision machining of STAVAX (modified AISI 420 stainless steel) at low speeds with and without lubricant. A sprayed mixture of compressed air, liquid paraffin oil and cyclomethicone was used as lubricant. Examination of the wear at the rake face of the tool suggests that during machining of the alloy with a hardness of 55 HRC without lubricant, the cutting edge is subjected to high compressive stress, resulting in fracture. Reducing the hardness of the alloy would therefore result in a lower stress acting on the cutting edge, thus rendering the tool less susceptible to fracture. Both the rake and the flank faces of the coated tools exhibited lower wear than the uncoated tools. This was due to the former tools possessing higher fracture resistance owing to the presence of the coating. The lubricant was effective in improving surface finish, preventing surface fracture and reducing flank wear

    Nanoscale Processing by Adaptive Laser Pulses

    Full text link
    We theoretically demonstrate that atomically-precise ``nanoscale processing" can be reproducibly performed by adaptive laser pulses. We present the new approach on the controlled welding of crossed carbon nanotubes, giving various metastable junctions of interest. Adaptive laser pulses could be also used in preparation of other hybrid nanostructures.Comment: 4 pages, 4 Postscript figure

    An Acousto-Optic Vibrometer for Measurement of Vibration in Ultra-Precision Machine Tools

    No full text

    Recent Advances in Machining of Silicon Wafers for Semiconductor Applications

    No full text

    Application of Interferometry in Ultrasonic System for Vibration

    No full text
    International audienceVibration signals are important state parameters for mechanical equipments’ status monitoring and fault diagnosis. In this paper, in order to overcome the limitations of the traditional vibration measurement med1ods and instrument, a new non-contacting vibration method based on ultrasonic for vibration detection in special environment was presented. The mainly researched in this paper were the circuit for ultrasonic transmitting, receiving, algorithm and the module based on LabVIEW for signal analysis and processing. New algorithm was adopted in the system design. The measurement for vibration signals, which may have higher accuracy, was based on ultrasonic wave of different frequency. Experiments were carried on for proving the theory and the result was expected, verifying the reliability and feasibility of the system
    corecore