2,131 research outputs found
Annealing Effect for Supersolid Fraction in He
We report on experimental confirmation of the non-classical rotational
inertia (NCRI) in solid helium samples originally reported by Kim and Chan. The
onset of NCRI was observed at temperatures below ~400 mK. The ac velocity for
initiation of the NCRI suppression is estimated to be ~10 m/sec. After an
additional annealing of the sample at K for 12 hours, ~ 10% relative
increase of NCRI fraction was observed. Then after repeated annealing with the
same conditions, the NCRI fraction was saturated. It differs from Reppy's
observation on a low pressure solid sample.Comment: to be published in J. of Low Temp. Phys. (QFS2006 proceedings
Estimating Travel Cost Model: Spatial Approach
travel cost model, spatial analysis, Environmental Economics and Policy,
A size-dependent nanoscale metalâinsulator transition in random materials
Insulators and conductors with periodic structures can be readily distinguished, because they have different band structures, but the differences between insulators and conductors with random structures are more subtle. In 1958, Anderson provided a straightforward criterion for distinguishing between random insulators and conductors, based on the \u27diffusion\u27 distance ζ for electrons at 0 K (ref. 3). Insulators have a finite ζ, but conductors have an infinite ζ. Aided by a scaling argument, this concept can explain many phenomena in disordered electronic systems, such as the fact that the electrical resistivity of \u27dirty\u27 metals always increases as the temperature approaches 0 K (refs 4â6). Further verification for this model has come from experiments that measure how the properties of macroscopic samples vary with changes in temperature, pressure, impurity concentration and applied magnetic field, but, surprisingly, there have been no attempts to engineer a metalâinsulator transition by making the sample size less than or more thanζ. Here, we report such an engineered transition using six different thin-film systems: two are glasses that contain dispersed platinum atoms, and four are single crystals of perovskite that contain minor conducting components. With a sample size comparable to ζ, transitions can be triggered by using an electric field or ultraviolet radiation to tune ζ through the injection and extraction of electrons. It would seem possible to take advantage of this nanometallicity in applications
Zero-point vacancies in quantum solids
A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a
quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known
that both JWF and SWF describe a quantum solid with also a finite equilibrium
concentration of vacancies x_v. We outline a route for estimating x_v by
exploiting the existing formal equivalence between the absolute square of the
ground state wave function and the Boltzmann weight of a classical solid. We
compute x_v for the quantum solids described by JWF and SWF employing very
accurate numerical techniques. For JWF we find a very small value for the zero
point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently
gives the best variational description of solid 4He, we find the significantly
larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also
study two and three vacancies. We find that there is a strong short range
attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy
A Kinetic Study of Microwave Start-up of Tokamak Plasmas
A kinetic model for studying the time evolution of the distribution function for microwave startup is presented. The model for the distribution function is two dimensional in momentum space, but, for simplicity and rapid calculations, has no spatial dependence. Experiments on the Mega Amp Spherical Tokamak have shown that the plasma current is carried mainly by electrons with energies greater than 70 keV, and effects thought to be important in these experiments are included, i.e. particle sources, orbital losses, the loop voltage and microwave heating, with suitable volume averaging where necessary to give terms independent of spatial dimensions. The model predicts current carried by electrons with the same energies as inferred from the experiments, though the current drive effciency is smaller
Two-body correlations and the superfluid fraction for nonuniform systems
We extend the one-body phase function upper bound on the superfluid fraction
in a periodic solid (a spatially ordered supersolid) to include two-body phase
correlations. The one-body current density is no longer proportional to the
gradient of the one-body phase times the one-body density, but rather it
depends also on two-body correlation functions. The equations that
simultaneously determine the one-body and two-body phase functions require a
knowledge of one-, two-, and three-body correlation functions. The approach can
also be extended to disordered solids. Fluids, with two-body densities and
two-body phase functions that are translationally invariant, cannot take
advantage of this additional degree of freedom to lower their energy.Comment: 13 page
How much energy do closed timelike curves in 2+1 spacetimes need?
By noticing that, in open 2+1 gravity, polarized surfaces cannot converge in
the presence of timelike total energy momentum (except for a rotation of 2 pi),
we give a simple argument which shows that, quite generally, closed timelike
curves cannot exist in the presence of such energy condition.Comment: 3 pages, with no figures. Accepted in PRD as Rapid Communicatio
Study of solid 4He in two dimensions. The issue of zero-point defects and study of confined crystal
Defects are believed to play a fundamental role in the supersolid state of
4He. We report on studies by exact Quantum Monte Carlo (QMC) simulations at
zero temperature of the properties of solid 4He in presence of many vacancies,
up to 30 in two dimensions (2D). In all studied cases the crystalline order is
stable at least as long as the concentration of vacancies is below 2.5%. In the
2D system for a small number, n_v, of vacancies such defects can be identified
in the crystalline lattice and are strongly correlated with an attractive
interaction. On the contrary when n_v~10 vacancies in the relaxed system
disappear and in their place one finds dislocations and a revival of the
Bose-Einstein condensation. Thus, should zero-point motion defects be present
in solid 4He, such defects would be dislocations and not vacancies, at least in
2D. In order to avoid using periodic boundary conditions we have studied the
exact ground state of solid 4He confined in a circular region by an external
potential. We find that defects tend to be localized in an interfacial region
of width of about 15 A. Our computation allows to put as upper bound limit to
zero--point defects the concentration 0.003 in the 2D system close to melting
density.Comment: 17 pages, accepted for publication in J. Low Temp. Phys., Special
Issue on Supersolid
Realâworld evidence of brigatinib as secondâline treatment after crizotinib for ALK+ nonâsmall cell lung cancer using South Korean claims data (KâAREAL)
Purpose
There is a lack of real-world data in Asian populations for brigatinib, a next-generation anaplastic lymphoma kinase (ALK) inhibitor for patients with non-small cell lung cancer (NSCLC). This study analysed real-world outcomes and dosing patterns for brigatinib in patients with crizotinib-refractory ALK+ NSCLC in South Korea.
Methods
This retrospective, non-interventional, cohort study used South Korean Health Insurance and Review Assessment claims data for adults with ALK+ NSCLC who initiated brigatinib between 19 April 2019 and 31 March 2021 after receiving prior crizotinib. Patients' characteristics, time to discontinuation (TTD), time to dose reduction, overall survival (OS) and treatment adherence were assessed.
Results
The study included 174 patients (56.9% male; 27.0% with a history of brain metastases). Median duration of prior crizotinib was 17 (range 0.3â48) months. Median follow-up after brigatinib initiation was 18 (range 0â34) months. Overall, 88.5% of patients received full-dose brigatinib (180âmg/day) and 93.1% of patients were adherent (proportion of days covered â„0.8). The median TTD was 24.9âmonths (95% CI 15.2ânot reached). The probability of continuing treatment was 63.2% at 1âyear and 51.5% at 2âyears. The probability of continuing at full or peak dose was 79.7% at 1âyear and 75.6% at 2âyears. Median OS was not reached. The 2-year OS rate was 68.7%.
Conclusions
In this first nationwide retrospective study using national insurance claim data, brigatinib demonstrated real-world clinical benefit as second-line treatment after prior crizotinib in ALK+ NSCLC patients in South Korea
- âŠ