3 research outputs found

    Numerical study of a first-order irreversible phase transition in a CO+NO catalyzed reaction model

    Full text link
    The first-order irreversible phase transitions (IPT) of the Yaldran-Khan model (Yaldran-Khan, J. Catal. 131, 369, 1991) for the CO+NO reaction is studied using the constant coverage (CC) ensemble and performing epidemic simulations. The CC method allows the study of hysteretic effects close to coexistence as well as the location of both the upper spinodal point and the coexistence point. Epidemic studies show that at coexistence the number of active sites decreases according to a (short-time) power law followed by a (long-time) exponential decay. It is concluded that first-order IPT's share many characteristic of their reversible counterparts, such as the development of short ranged correlations, hysteretic effects, metastabilities, etc.Comment: 17 pages, 10 figure

    Adsorption of Line Segments on a Square Lattice

    Full text link
    We study the deposition of line segments on a two-dimensional square lattice. The estimates for the coverage at jamming obtained by Monte-Carlo simulations and by 7th7^{th}-order time-series expansion are successfully compared. The non-trivial limit of adsorption of infinitely long segments is studied, and the lattice coverage is consistently obtained using these two approaches.Comment: 19 pages in Latex+5 postscript files sent upon request ; PTB93_

    Kinetics and Jamming Coverage in a Random Sequential Adsorption of Polymer Chains

    Get PDF
    Using a highly efficient Monte Carlo algorithm, we are able to study the growth of coverage in a random sequential adsorption (RSA) of self-avoiding walk (SAW) chains for up to 10^{12} time steps on a square lattice. For the first time, the true jamming coverage (theta_J) is found to decay with the chain length (N) with a power-law theta_J propto N^{-0.1}. The growth of the coverage to its jamming limit can be described by a power-law, theta(t) approx theta_J -c/t^y with an effective exponent y which depends on the chain length, i.e., y = 0.50 for N=4 to y = 0.07 for N=30 with y -> 0 in the asymptotic limit N -> infinity.Comment: RevTeX, 5 pages inclduing figure
    corecore