7 research outputs found

    Systematic Study of Electron Localization in an Amorphous Semiconductor

    Full text link
    We investigate the electronic structure of gap and band tail states in amorphous silicon. Starting with two 216-atom models of amorphous silicon with defect concentration close to the experiments, we systematically study the dependence of electron localization on basis set, density functional and spin polarization using the first principles density functional code Siesta. We briefly compare three different schemes for characterizing localization: information entropy, inverse participation ratio and spatial variance. Our results show that to accurately describe defect structures within self consistent density functional theory, a rich basis set is necessary. Our study revealed that the localization of the wave function associated with the defect states decreases with larger basis sets and there is some enhancement of localization from GGA relative to LDA. Spin localization results obtained via LSDA calculations, are in reasonable agreement with experiment and with previous LSDA calculations on a-Si:H models.Comment: 16 pages, 11 Postscript figures, To appear in Phys. Rev.

    All-electron magnetic response with pseudopotentials: NMR chemical shifts

    Full text link
    A theory for the ab initio calculation of all-electron NMR chemical shifts in insulators using pseudopotentials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension to the Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50, 17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G. Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and in periodic systems by comparison with plane-wave all-electron results for diamond.Comment: 25 pages, 4 tables, submitted to Physical Review

    First-principles investigation of electronic structure and optical properties in N-F codoped ZnO with wurtzite structure

    No full text
    The electronic structures and optical properties of pure, N-doped and N-F codoped ZnO are investigated based on the density-functional theory. The calculations of the impurity formation energies and ionization energies for these systems indicate that incorporating the reactive donor F into N doped ZnO systems, not only enhances the N acceptor solubility, but also leads to a shallower N acceptor energy level in the band gap in p-type codoped ZnO. In addition, we analyze the imaginary part of the dielectric functions, and reflectivities for pure and N-F codoped ZnO. Compared with the pure ZnO, the remarkable feature in the dielectric function for N-F codoped ZnO is that there is a sharp peak in the low-energy region. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

    Bibliography

    No full text
    corecore