19 research outputs found

    Phase shift effective range expansion from supersymmetric quantum mechanics

    Full text link
    Supersymmetric or Darboux transformations are used to construct local phase equivalent deep and shallow potentials for 0\ell \neq 0 partial waves. We associate the value of the orbital angular momentum with the asymptotic form of the potential at infinity which allows us to introduce adequate long-distance transformations. The approach is shown to be effective in getting the correct phase shift effective range expansion. Applications are considered for the 1P1^1P_1 and 1D2^1D_2 partial waves of the neutron-proton scattering.Comment: 6 pages, 3 figures, Revtex4, version to be publised in Physical Review

    The minimum-error discrimination via Helstrom family of ensembles and Convex Optimization

    Full text link
    Using the convex optimization method and Helstrom family of ensembles introduced in Ref. [1], we have discussed optimal ambiguous discrimination in qubit systems. We have analyzed the problem of the optimal discrimination of N known quantum states and have obtained maximum success probability and optimal measurement for N known quantum states with equiprobable prior probabilities and equidistant from center of the Bloch ball, not all of which are on the one half of the Bloch ball and all of the conjugate states are pure. An exact solution has also been given for arbitrary three known quantum states. The given examples which use our method include: 1. Diagonal N mixed states; 2. N equiprobable states and equidistant from center of the Bloch ball which their corresponding Bloch vectors are inclined at the equal angle from z axis; 3. Three mirror-symmetric states; 4. States that have been prepared with equal prior probabilities on vertices of a Platonic solid. Keywords: minimum-error discrimination, success probability, measurement, POVM elements, Helstrom family of ensembles, convex optimization, conjugate states PACS Nos: 03.67.Hk, 03.65.TaComment: 15 page

    Notes on Exact Multi-Soliton Solutions of Noncommutative Integrable Hierarchies

    Get PDF
    We study exact multi-soliton solutions of integrable hierarchies on noncommutative space-times which are represented in terms of quasi-determinants of Wronski matrices by Etingof, Gelfand and Retakh. We analyze the asymptotic behavior of the multi-soliton solutions and found that the asymptotic configurations in soliton scattering process can be all the same as commutative ones, that is, the configuration of N-soliton solution has N isolated localized energy densities and the each solitary wave-packet preserves its shape and velocity in the scattering process. The phase shifts are also the same as commutative ones. Furthermore noncommutative toroidal Gelfand-Dickey hierarchy is introduced and the exact multi-soliton solutions are given.Comment: 18 pages, v3: references added, version to appear in JHE

    Lower bound of minimal time evolution in quantum mechanics

    Full text link
    We show that the total time of evolution from the initial quantum state to final quantum state and then back to the initial state, i.e., making a round trip along the great circle over S^2, must have a lower bound in quantum mechanics, if the difference between two eigenstates of the 2\times 2 Hamiltonian is kept fixed. Even the non-hermitian quantum mechanics can not reduce it to arbitrarily small value. In fact, we show that whether one uses a hermitian Hamiltonian or a non-hermitian, the required minimal total time of evolution is same. It is argued that in hermitian quantum mechanics the condition for minimal time evolution can be understood as a constraint coming from the orthogonality of the polarization vector \bf P of the evolving quantum state \rho={1/2}(\bf 1+ \bf{P}\cdot\boldsymbol{\sigma}) with the vector \boldsymbol{\mathcal O}(\Theta) of the 2\times 2 hermitian Hamiltonians H ={1/2}({\mathcal O}_0\boldsymbol{1}+ \boldsymbol{\mathcal O}(\Theta)\cdot\boldsymbol{\sigma}) and it is shown that the Hamiltonian H can be parameterized by two independent parameters {\mathcal O}_0 and \Theta.Comment: 4 pages, no figure, revtex

    Extended WKB method, resonances and supersymmetric radial barriers

    Full text link
    Semiclassical approximations are implemented in the calculation of position and width of low energy resonances for radial barriers. The numerical integrations are delimited by t/T<<8, with t the period of a classical particle in the barrier trap and T the resonance lifetime. These energies are used in the construction of `haired' short range potentials as the supersymmetric partners of a given radial barrier. The new potentials could be useful in the study of the transient phenomena which give rise to the Moshinsky's diffraction in time.Comment: 12 pages, 4 figures, 3 table

    First-order intertwining operators with position dependent mass and η\eta- weak-psuedo-Hermiticity generators

    Get PDF
    A Hermitian and an anti-Hermitian first-order intertwining operators are introduced and a class of η\eta-weak-pseudo-Hermitian position-dependent mass (PDM) Hamiltonians are constructed. A corresponding reference-target η\eta-weak-pseudo-Hermitian PDM -- Hamiltonians' map is suggested. Some η\eta-weak-pseudo-Hermitian PT -symmetric Scarf II and periodic-type models are used as illustrative examples. Energy-levels crossing and flown-away states phenomena are reported for the resulting Scarf II spectrum. Some of the corresponding η\eta-weak-pseudo-Hermitian Scarf II- and periodic-type-isospectral models (PT -symmetric and non-PT -symmetric) are given as products of the reference-target map.Comment: 11 pages, no figures, Revised/Expanded, more references added. To appear in the Int.J. Theor. Phy

    Superconformal mechanics and nonlinear supersymmetry

    Full text link
    We show that a simple change of the classical boson-fermion coupling constant, 2α2αn2\alpha \to 2\alpha n , nNn\in \N, in the superconformal mechanics model gives rise to a radical change of a symmetry: the modified classical and quantum systems are characterized by the nonlinear superconformal symmetry. It is generated by the four bosonic integrals which form the so(1,2) x u(1) subalgebra, and by the 2(n+1) fermionic integrals constituting the two spin-n/2 so(1,2)-representations and anticommuting for the order n polynomials of the even generators. We find that the modified quantum system with an integer value of the parameter α\alpha is described simultaneously by the two nonlinear superconformal symmetries of the orders relatively shifted in odd number. For the original quantum model with α=p|\alpha|=p, pNp\in \N, this means the presence of the order 2p nonlinear superconformal symmetry in addition to the osp(2|2) supersymmetry.Comment: 16 pages; misprints corrected, note and ref added, to appear in JHE

    (1+1)-Dirac particle with position-dependent mass in complexified Lorentz scalar interactions: effectively PT-symmetric

    Full text link
    The effect of the built-in supersymmetric quantum mechanical language on the spectrum of the (1+1)-Dirac equation, with position-dependent mass (PDM) and complexified Lorentz scalar interactions, is re-emphasized. The signature of the "quasi-parity" on the Dirac particles' spectra is also studied. A Dirac particle with PDM and complexified scalar interactions of the form S(z)=S(x-ib) (an inversely linear plus linear, leading to a PT-symmetric oscillator model), and S(x)=S_{r}(x)+iS_{i}(x) (a PT-symmetric Scarf II model) are considered. Moreover, a first-order intertwining differential operator and an η\eta-weak-pseudo-Hermiticity generator are presented and a complexified PT-symmetric periodic-type model is used as an illustrative example.Comment: 11 pages, no figures, revise

    SU(1,1) Coherent States For Position-Dependent Mass Singular Oscillators

    Full text link
    The Schroedinger equation for position-dependent mass singular oscillators is solved by means of the factorization method and point transformations. These systems share their spectrum with the conventional singular oscillator. Ladder operators are constructed to close the su(1,1) Lie algebra and the involved point transformations are shown to preserve the structure of the Barut-Girardello and Perelomov coherent states.Comment: 11 pages, 5 figures. This shortened version (includes new references) has been adapted for its publication in International Journal of Theoretical Physic

    Phase equivalent chains of Darboux transformations in scattering theory

    Get PDF
    We propose a procedure based on phase equivalent chains of Darboux transformations to generate local potentials satisfying the radial Schrodinger equation and sharing the same scattering data. For potentials related by a chain of transformations, an analytic expression is derived for the Jost function. It is shown how the same system of S-matrix poles can be differently distributed between poles and zeros of a Jost function that corresponds to different potentials with equal phase shifts. The concept of shallow and deep phase equivalent potentials is analyzed in connection with distinct distributions of poles. It is shown that phase equivalent chains do not violate the Levinson theorem. The method is applied to derive a shallow and a family of deep phase equivalent potentials describing the S-1(0) partial wave of the nucleon-nucleon scattering
    corecore