593 research outputs found
Description of a presumptive hepatopancreatic reovirus, and a putative gill parvovirus, in the freshwater crayfish Cherax quadricarinatus
The redclaw freshwater crayfish Cherax quadricarinatus has a reputation for being hardy and resistant to handling stress. However, in recent years, possibly since 1996, C. quadricarinatus farmers in northern Queensland have noted a decrease in stress resistance in their stock. A presumptive reovirus in the hepatopancreas, and a putative parvovirus in the gills, were associated with chronic mortalities in C. quadricarinatus at one northern Queensland farm. Hypertrophic nuclei with marginated chromatin were observed in gill epithelium in moribund crayfish which had recently been relocated to a laboratory from the holding tank facility on the farm. Affected nuclei appeared to be vacant or contained a faint granular basophilia in H&E stained sections. However, toluidine blue staining revealed a homogeneously granular appearance of the nuclei. Transmission electron microscopy revealed approximately 20 nm diameter virus-like particles within the nucleus. Eosinophilic, Feulgen-negative, cytoplasmic inclusions were observed in distal hepatopancreatocytes in 1 moribund C. quadricarinatus collected from the same on-farm holding tank approximately 6 mo later. This crayfish did not display the gill lesions. Transmission electron microscopy showed that the inclusions contained icosahedral virus particles 35 to 40 nm in diameter. The histopathology and preliminary virus morphology of the presumptive hepatopancreatic reovirus, and the histopathology, ultrastructural pathology and preliminary virus morphology of the putative gill parvovirus, are reported herein
An extension of the coupled-cluster method: A variational formalism
A general quantum many-body theory in configuration space is developed by
extending the traditional coupled cluter method (CCM) to a variational
formalism. Two independent sets of distribution functions are introduced to
evaluate the Hamiltonian expectation. An algebraic technique for calculating
these distribution functions via two self-consistent sets of equations is
given. By comparing with the traditional CCM and with Arponen's extension, it
is shown that the former is equivalent to a linear approximation to one set of
distribution functions and the later is equivalent to a random-phase
approximation to it. In additional to these two approximations, other
higher-order approximation schemes within the new formalism are also discussed.
As a demonstration, we apply this technique to a quantum antiferromagnetic spin
model.Comment: 15 pages. Submitted to Phys. Rev.
Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric
Continuing our investigation of the regularization of the noise kernel in
curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001
(2001)] we adopt the modified point separation scheme for the class of optical
spacetimes using the Gaussian approximation for the Green functions a la
Bekenstein-Parker-Page. In the first example we derive the regularized noise
kernel for a thermal field in flat space. It is useful for black hole
nucleation considerations. In the second example of an optical Schwarzschild
spacetime we obtain a finite expression for the noise kernel at the horizon and
recover the hot flat space result at infinity. Knowledge of the noise kernel is
essential for studying issues related to black hole horizon fluctuations and
Hawking radiation backreaction. We show that the Gaussian approximated Green
function which works surprisingly well for the stress tensor at the
Schwarzschild horizon produces significant error in the noise kernel there. We
identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX
Motion of Inertial Observers Through Negative Energy
Recent research has indicated that negative energy fluxes due to quantum
coherence effects obey uncertainty principle-type inequalities of the form
|\Delta E|\,{\Delta \tau} \lprox 1\,. Here is the magnitude of
the negative energy which is transmitted on a timescale . Our main
focus in this paper is on negative energy fluxes which are produced by the
motion of observers through static negative energy regions. We find that
although a quantum inequality appears to be satisfied for radially moving
geodesic observers in two and four-dimensional black hole spacetimes, an
observer orbiting close to a black hole will see a constant negative energy
flux. In addition, we show that inertial observers moving slowly through the
Casimir vacuum can achieve arbitrarily large violations of the inequality. It
seems likely that, in general, these types of negative energy fluxes are not
constrained by inequalities on the magnitude and duration of the flux. We
construct a model of a non-gravitational stress-energy detector, which is
rapidly switched on and off, and discuss the strengths and weaknesses of such a
detector.Comment: 18pp + 1 figure(not included, available on request), in LATEX,
TUPT-93-
Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides
Roles of orbital and lattice degrees of freedom in strongly correlated
systems are investigated to understand electronic properties of perovskite Mn
oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model
containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller
coupling is derived under full polarization of spins with two-dimensional
anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital
degrees of freedom are investigated by using the quantum Monte Carlo method. In
undoped states, it is crucial to consider both the Coulomb interaction and the
Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales
among charge, orbital-lattice and spin degrees of freedom in experiments. Our
numerical results quantitatively reproduce the charge gap amplitude as well as
the stabilization energy and the amplitude of the cooperative Jahn-Teller
distortion in undoped compounds. Upon doping of carriers, in the absence of the
Jahn-Teller distortion, critical enhancement of both charge compressibility and
orbital correlation length is found with decreasing doping concentration. These
are discussed as origins of strong incoherence in charge dynamics. With the
Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller
distortion and instability to phase separation are obtained and favorably
compared with experiments. These provide a possible way to understand the
complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B,
replaced version; two figures are replaced by Fig.17 with minor changes in
the tex
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib The CheckMate 040 Randomized Clinical Trial
IMPORTANCE Most patients with hepatocellular carcinoma (HCC) are diagnosed with
advanced disease not eligible for potentially curative therapies; therefore, new treatment
options are needed. Combining nivolumab with ipilimumab may improve clinical outcomes
compared with nivolumab monotherapy.
OBJECTIVE To assess efficacy and safety of nivolumab plus ipilimumab in patients with
advanced HCC who were previously treated with sorafenib.
DESIGN, SETTING, AND PARTICIPANTS CheckMate 040 is a multicenter, open-label,
multicohort, phase 1/2 study. In the nivolumab plus ipilimumab cohort, patients were
randomized between January 4 and September 26, 2016. Treatment group information was
blinded after randomization. Median follow-up was 30.7 months. Data cutoff for this analysis
was January 2019. Patients were recruited at 31 centers in 10 countries/territories in Asia,
Europe, and North America. Eligible patients had advanced HCC (with/without hepatitis B or
C) previously treated with sorafenib. A total of 148 patients were randomized (50 to arm A
and 49 each to arms B and C).
INTERVENTIONS Patients were randomized 1:1:1 to either nivolumab 1 mg/kg plus ipilimumab 3
mg/kg, administered every 3 weeks (4 doses), followed by nivolumab 240 mg every 2 weeks
(arm A); nivolumab 3 mg/kg plus ipilimumab 1 mg/kg, administered every 3 weeks (4 doses),
followed by nivolumab 240 mg every 2 weeks (arm B); or nivolumab 3 mg/kg every 2 weeks
plus ipilimumab 1 mg/kg every 6 weeks (arm C).
MAIN OUTCOMES AND MEASURES Coprimary end points were safety, tolerability, and objective
response rate. Duration of response was also measured (investigator assessed with the
Response Evaluation Criteria in Solid Tumors v1.1).
RESULTS Of 148 total participants, 120 were male (81%). Median (IQR) age was 60
(52.5-66.5). At data cutoff (January 2019), the median follow-up was 30.7 months (IQR,
29.9-34.7). Investigator-assessed objective response rate was 32% (95% CI, 20%-47%) in
arm A, 27% (95% CI, 15%-41%) in arm B, and 29% (95% CI, 17%-43%) in arm C. Median
(range) duration of response was not reached (8.3-33.7+) in arm A and was 15.2 months
(4.2-29.9+) in arm B and 21.7 months (2.8-32.7+) in arm C. Any-grade treatment-related
adverse events were reported in 46 of 49 patients (94%) in arm A, 35 of 49 patients (71%) in
arm B, and 38 of 48 patients (79%) in arm C; there was 1 treatment-related death (arm A;
grade 5 pneumonitis).
CONCLUSIONS AND RELEVANCE In this randomized clinical trial, nivolumab plus ipilimumab
had manageable safety, promising objective response rate, and durable responses. The arm A
regimen (4 doses nivolumab 1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks then nivolumab
240 mg every 2 weeks) received accelerated approval in the US based on the results of this
study.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0165887
- …