459 research outputs found
Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections
We present a method for tracking and predicting the propagation and evolution
of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO
satellites. By empirically modeling the material between the inner core and
leading edge of a CME as an expanding, outward propagating ellipsoid, we track
its evolution in three-dimensional space. Though more complex empirical CME
models have been developed, we examine the accuracy of this relatively simple
geometric model, which incorporates relatively few physical assumptions,
including i) a constant propagation angle and ii) an azimuthally symmetric
structure. Testing our ellipsoid model developed herein on three separate CMEs,
we find that it is an effective tool for predicting the arrival of density
enhancements and the duration of each event near 1 AU. For each CME studied,
the trends in the trajectory, as well as the radial and transverse expansion
are studied from 0 to ~.3 AU to create predictions at 1 AU with an average
accuracy of 2.9 hours.Comment: 18 pages, 11 figure
Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations
Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible
to derive the direction of propagation of coronal mass ejections (CMEs) in
addition to their speed with a variety of methods. For CMEs observed by both
STEREO spacecraft, it is possible to derive their direction using simultaneous
observations from the twin spacecraft and also, using observations from only
one spacecraft with fitting methods. This makes it possible to test and compare
different analyses techniques. In this article, we propose a new fitting method
based on observations from one spacecraft, which we compare to the commonly
used fitting method of Sheeley et al. (1999). We also compare the results from
these two fitting methods with those from two stereoscopic methods, focusing on
12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009.
We find evidence that the fitting method of Sheeley et al. (1999) can result in
significant errors in the determination of the CME direction when the CME
propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect
our new fitting method to be better adapted to the analysis of halo or limb
CMEs with respect to the observing spacecraft. We also find some evidence that
direct triangulation in the HI fields-of-view should only be applied to CMEs
propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line).
Last, we address one of the possible sources of errors of fitting methods: the
assumption of radial propagation. Using stereoscopic methods, we find that at
least seven of the 12 studied CMEs had an heliospheric deflection of less than
20deg as they propagated in the HI fields-of-view, which, we believe, validates
this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic
Is the Sun Embedded in a Typical Interstellar Cloud?
The physical properties and kinematics of the partially ionized interstellar
material near the Sun are typical of warm diffuse clouds in the solar vicinity.
The interstellar magnetic field at the heliosphere and the kinematics of nearby
clouds are naturally explained in terms of the S1 superbubble shell. The
interstellar radiation field at the Sun appears to be harder than the field
ionizing ambient diffuse gas, which may be a consequence of the low opacity of
the tiny cloud surrounding the heliosphere. The spatial context of the Local
Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at
International Space Sciences Institute, October 200
Nuclear Spin-Isospin Correlations, Parity Violation, and the Problem
The strong interaction effects of isospin- and spin-dependent nucleon-nucleon
correlations observed in many-body calculations are interpreted in terms of a
one-pion exchange mechanism. Including such effects in computations of nuclear
parity violating effects leads to enhancements of about 10%. A larger effect
arises from the one-boson exchange nature of the parity non-conserving nucleon-
nucleon interaction, which depends on both weak and strong meson-nucleon
coupling constants. Using values of the latter that are constrained by
nucleon-nucleon phase shifts leads to enhancements of parity violation by
factors close to two. Thus much of previously noticed discrepancies between
weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v
Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation
In an effort to examine the relationship between flare flux and corresponding
CME mass, we temporally and spatially correlate all X-ray flares and CMEs in
the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs
having well-measured masses against 12,050 X-ray flares having position
information as determined from their optical counterparts. For a given flare,
we search in time for CMEs which occur 10-80 minutes afterward, and we further
require the flare and CME to occur within +/-45 degrees in position angle on
the solar disk. There are 826 CME/flare pairs which fit these criteria.
Comparing the flare fluxes with CME masses of these paired events, we find CME
mass increases with flare flux, following an approximately log-linear, broken
relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare
flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare
flux). We show that this broken power-law, and in particular the flatter slope
at higher flare fluxes, may be due to an observational bias against CMEs
associated with the most energetic flares: halo CMEs. Correcting for this bias
yields a single power-law relationship of the form log(CME mass)~0.70*log(flare
flux). This function describes the relationship between CME mass and flare flux
over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
The Local Bubble and Interstellar Material Near the Sun
The properties of interstellar matter (ISM) at the Sun are regulated by our
location with respect to the Local Bubble (LB) void in the ISM. The LB is
bounded by associations of massive stars and fossil supernovae that have
disrupted natal ISM and driven intermediate velocity ISM into the LB interior
void. The Sun is located in such a driven ISM parcel. The Local Fluff has a
bulk velocity of 19 km/s in the LSR, and an upwind direction towards the center
of the gas and dust ring formed by the Loop I supernova remnant interaction
with the LB. When the ram pressure of the LIC is included in the total LIC
pressure, and if magnetic thermal and cosmic ray pressures are similar, the LIC
appears to be in pressure equilibrium with the local hot bubble plasma.Comment: Proceedings of Symposium on the Composition of Matter, honoring
Johannes Geiss on the occasion of his 80th birthday. Space Science Reviews
(in press
Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images
The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods
to determine the average direction and velocity of coronal mass ejections
(CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such
as the HIs onboard the STEREO spacecraft. Both methods assume a constant
velocity in their descriptions of the time-elongation profiles of CMEs, which
are used to fit the observed time-elongation data. Here, we analyze the effect
of aerodynamic drag on CMEs propagating through interplanetary space, and how
this drag affects the result of the F\Phi and HM fitting methods. A simple drag
model is used to analytically construct time-elongation profiles which are then
fitted with the two methods. It is found that higher angles and velocities give
rise to greater error in both methods, reaching errors in the direction of
propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods,
respectively. This is due to the physical accelerations of the CMEs being
interpreted as geometrical accelerations by the fitting methods. Because of the
geometrical definition of the HM fitting method, it is affected by the
acceleration more greatly than the F\Phi fitting method. Overall, we find that
both techniques overestimate the initial (and final) velocity and direction for
fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that
arrival times at 1 AU would be predicted early (by up to 12 hours). We also
find that the direction and arrival time of a wide and decelerating CME can be
better reproduced by the F\Phi due to the cancellation of two errors:
neglecting the CME width and neglecting the CME deceleration. Overall, the
inaccuracies of the two fitting methods are expected to play an important role
in the prediction of CME hit and arrival times as we head towards solar maximum
and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page
Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts
The NASA STEREO mission opened up the possibility to forecast the arrival
times, speeds and directions of solar transients from outside the Sun-Earth
line. In particular, we are interested in predicting potentially geo-effective
Interplanetary Coronal Mass Ejections (ICMEs) from observations of density
structures at large observation angles from the Sun (with the STEREO
Heliospheric Imager instrument). We contribute to this endeavor by deriving
analytical formulas concerning a geometric correction for the ICME speed and
arrival time for the technique introduced by Davies et al. (2012, ApJ, in
press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a
circle propagates outward, along a plane specified by a position angle (e.g.
the ecliptic), with constant angular half width (lambda). This is an extension
to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and
Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage
that it is possible to assess clearly, in contrast to previous models, if a
particular location in the heliosphere, such as a planet or spacecraft, might
be expected to be hit by the ICME front. Our correction formulas are especially
significant for glancing hits, where small differences in the direction greatly
influence the expected speeds (up to 100-200 km/s) and arrival times (up to two
days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the
geometric correction becomes very similar to the one derived by M\"ostl et al.
(2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic
expressions can also be used for empirical or analytical models to predict the
1 AU arrival time of an ICME by correcting for effects of hits by the flank
rather than the apex, if the width and direction of the ICME in a plane are
known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics
Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth
During the solar journey through galactic space, variations in the physical
properties of the surrounding interstellar medium (ISM) modify the heliosphere
and modulate the flux of galactic cosmic rays (GCR) at the surface of the
Earth, with consequences for the terrestrial record of cosmogenic
radionuclides. One phenomenon that needs studying is the effect on cosmogenic
isotope production of changing anomalous cosmic ray fluxes at Earth due to
variable interstellar ionizations. The possible range of interstellar ram
pressures and ionization levels in the low density solar environment generate
dramatically different possible heliosphere configurations, with a wide range
of particle fluxes of interstellar neutrals, their secondary products, and GCRs
arriving at Earth. Simple models of the distribution and densities of ISM in
the downwind direction give cloud transition timescales that can be directly
compared with cosmogenic radionuclide geologic records. Both the interstellar
data and cosmogenic radionuclide data are consistent with cloud transitions
during the Holocene, with large and assumption-dependent uncertainties. The
geomagnetic timeline derived from cosmic ray fluxes at Earth may require
adjustment to account for the disappearance of anomalous cosmic rays when the
Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review
- …