58 research outputs found

    Experimental demonstration of RF-pilot-based phase noise mitigation for millimeter-wave systems

    No full text
    Millimeter-wave bands are gaining popularity for high data rate wireless communication systems due to the wide available bandwidth. However, oscillator phase noise also increases as the carrier frequency increases. Methods of phase noise mitigation are therefore crucial for future millimeter-wave systems. In this work, we propose to adopt analog phase noise mitigation using an RF-pilot tone, which reduces both phase and frequency impairments of an arbitrary millimeter-wave signal at the expense of reduced spectral efficiency. The method is verified experimentally at carrier frequency of 28 GHz and E-band 73 GHz showing a 20 dB noise reduction up to 100 kHz offset. Since the method relaxes phase noise requirement it is attractive for phase noise sensitive technologies at high carrier frequency, such as OFDM used in LTE. As indicated by the simulation results, the reduced phase noise enables a LTE signal on a millimeter-wave carrier with marginal performance impact

    An update on the use of gonadotropin-releasing hormone antagonists in prostate cancer

    No full text
    Androgen deprivation therapy (ADT) is the main treatment approach in advanced prostate cancer and in recent years has primarily involved the use of gonadotropin-releasing hormone (GnRH) agonists. However, despite their efficacy, GnRH agonists have several drawbacks associated with their mode of action. These include an initial testosterone surge and testosterone microsurges on repeat administration. GnRH antagonists provide an alternative approach to ADT with a more direct mode of action that involves immediate blockade of GnRH receptors. Antagonists produce a more rapid suppression of testosterone (and prostate-specific antigen [PSA]) without a testosterone surge or microsurges and appear to offer an effective and well tolerated option for the hormonal treatment of prostate cancer. Comparisons with GnRH agonists have shown GnRH antagonists to be at least as effective in achieving and maintaining castrate testosterone levels in patients with prostate cancer. Furthermore, with antagonists, the lack of an initial testosterone surge (which may cause clinical flare) may allow more rapid relief of symptoms related to prostate cancer, avoid the need for concomitant antiandrogens to prevent clinical flare (so avoiding any antiandrogen-associated adverse events) and allow GnRH antagonist use in patients with high tumour burden and/or acute problems such as spinal cord compression. Although several antagonists have been investigated, only degarelix and abarelix are currently available for clinical use in prostate cancer. Currently, degarelix is the most extensively studied and widely available agent in this class. Degarelix is one of a newer generation of antagonists which, in a comprehensive and ongoing clinical development programme, has been shown to provide rapid, profound and sustained testosterone suppression without the systemic allergic reactions associated with earlier antagonists. This review examines the currently available data on GnRH antagonists in prostate cancer
    • 

    corecore