181 research outputs found

    Silicon-based Quantum Computation

    Get PDF

    Gate errors in solid state quantum computer architectures

    Full text link
    We theoretically consider possible errors in solid state quantum computation due to the interplay of the complex solid state environment and gate imperfections. In particular, we study two examples of gate operations in the opposite ends of the gate speed spectrum, an adiabatic gate operation in electron-spin-based quantum dot quantum computation and a sudden gate operation in Cooper pair box superconducting quantum computation. We evaluate quantitatively the non-adiabatic operation of a two-qubit gate in a two-electron double quantum dot. We also analyze the non-sudden pulse gate in a Cooper-pair-box-based quantum computer model. In both cases our numerical results show strong influences of the higher excited states of the system on the gate operation, clearly demonstrating the importance of a detailed understanding of the relevant Hilbert space structure on the quantum computer operations.Comment: 6 pages, 2 figure

    Schemes for Parallel Quantum Computation Without Local Control of Qubits

    Get PDF
    Typical quantum computing schemes require transformations (gates) to be targeted at specific elements (qubits). In many physical systems, direct targeting is difficult to achieve; an alternative is to encode local gates into globally applied transformations. Here we demonstrate the minimum physical requirements for such an approach: a one-dimensional array composed of two alternating 'types' of two-state system. Each system need be sensitive only to the net state of its nearest neighbors, i.e. the number in state 1 minus the number in state 2. Additionally, we show that all such arrays can perform quite general parallel operations. A broad range of physical systems and interactions are suitable: we highlight two potential implementations.Comment: 12 pages + 3 figures. Several small corrections mad

    Magnetic Resonance Force Microscopy Measurement of Entangled Spin States

    Get PDF
    We simulate magnetic resonance force microscopy measurements of an entangled spin state. One of the entangled spins drives the resonant cantilever vibrations, while the other remote spin does not interact directly with the quasiclassical cantilever. The Schr\"odinger cat state of the cantilever reveals two possible outcomes of the measurement for both entangled spins.Comment: 3 pages RevTe

    Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture

    Full text link
    We theoretically consider coherence times for spins in two quantum computer architectures, where the qubit is the spin of an electron bound to a P donor impurity in Si or within a GaAs quantum dot. We show that low temperature decoherence is dominated by spin-spin interactions, through spectral diffusion and dipolar flip-flop mechanisms. These contributions lead to 1-100 ÎŒ\mus calculated spin coherence times for a wide range of parameters, much higher than former estimates based on T2∗T_{2}^{*} measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the approximations employed in the spectral diffusion calculation. Final version to appear in Phys. Rev.

    Perturbation Theory for Quantum Computation with Large Number of Qubits

    Get PDF
    We describe a new and consistent perturbation theory for solid-state quantum computation with many qubits. The errors in the implementation of simple quantum logic operations caused by non-resonant transitions are estimated. We verify our perturbation approach using exact numerical solution for relatively small (L=10) number of qubits. A preferred range of parameters is found in which the errors in processing quantum information are small. Our results are needed for experimental testing of scalable solid-state quantum computers.Comment: 8 pages RevTex including 2 figure

    Fast Quantum Search Algorithms in Protein Sequence Comparison - Quantum Biocomputing

    Get PDF
    Quantum search algorithms are considered in the context of protein sequence comparison in biocomputing. Given a sample protein sequence of length m (i.e m residues), the problem considered is to find an optimal match in a large database containing N residues. Initially, Grover's quantum search algorithm is applied to a simple illustrative case - namely where the database forms a complete set of states over the 2^m basis states of a m qubit register, and thus is known to contain the exact sequence of interest. This example demonstrates explicitly the typical O(sqrt{N}) speedup on the classical O(N) requirements. An algorithm is then presented for the (more realistic) case where the database may contain repeat sequences, and may not necessarily contain an exact match to the sample sequence. In terms of minimizing the Hamming distance between the sample sequence and the database subsequences the algorithm finds an optimal alignment, in O(sqrt{N}) steps, by employing an extension of Grover's algorithm, due to Boyer, Brassard, Hoyer and Tapp for the case when the number of matches is not a priori known.Comment: LaTeX, 5 page

    Electronic transport through nuclear-spin-polarization-induced quantum wire

    Full text link
    Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which confines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear spin polarization. The influence of the nuclear spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed.Comment: 5 pages, 4 figure

    Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots

    Full text link
    We propose a model for spectral diffusion of localized spins in semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each nuclear spin flip-flop is assumed to be independent, the rate for this process being calculated by a method of moments. Our calculated spin decoherence time TM=0.64T_{M}=0.64 ms for donor electron spins in Si:P is a factor of two longer than spin echo decay measurements. For 31^{31}P nuclear spins we show that spectral diffusion is well into the motional narrowing regime. The calculation for GaAs quantum dots gives TM=10−50T_{M}=10-50 ÎŒ\mus depending on the quantum dot size. Our theory indicates that nuclear induced spectral diffusion should not be a serious problem in developing spin-based semiconductor quantum computer architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.

    On Quantum Control via Encoded Dynamical Decoupling

    Full text link
    I revisit the ideas underlying dynamical decoupling methods within the framework of quantum information processing, and examine their potential for direct implementations in terms of encoded rather than physical degrees of freedom. The usefulness of encoded decoupling schemes as a tool for engineering both closed- and open-system encoded evolutions is investigated based on simple examples.Comment: 12 pages, no figures; REVTeX style. This note collects various theoretical considerations complementing/motivated by the experimental demonstration of encoded control by Fortunato et a
    • 

    corecore