450 research outputs found

    Is the Sun Embedded in a Typical Interstellar Cloud?

    Full text link
    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at International Space Sciences Institute, October 200

    Three-body non-additive forces between spin-polarized alkali atoms

    Full text link
    Three-body non-additive forces in systems of three spin-polarized alkali atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio calculations. The non-additive forces are found to be large, especially near the equilateral equilibrium geometries. For Li, they increase the three-atom potential well depth by a factor of 4 and reduce the equilibrium interatomic distance by 0.9 A. The non-additive forces originate principally from chemical bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files

    Sensitivity of deexcitation energies of superdeformed secondary minima to the density dependence of symmetry energy with the relativistic mean-field theory

    Full text link
    The relationship between deexcitation energies of superdeformed secondary minima relative to ground states and the density dependence of the symmetry energy is investigated for heavy nuclei using the relativistic mean field (RMF) model. It is shown that the deexcitation energies of superdeformed secondary minima are sensitive to differences in the symmetry energy that are mimicked by the isoscalar-isovector coupling included in the model. With deliberate investigations on a few Hg isotopes that have data of deexcitation energies, we find that the description for the deexcitation energies can be improved due to the softening of the symmetry energy. Further, we have investigated deexcitation energies of odd-odd heavy nuclei that are nearly independent of pairing correlations, and have discussed the possible extraction of the constraint on the density dependence of the symmetry energy with the measurement of deexcitation energies of these nuclei.Comment: 14 pages, 3 figure

    The rate of colonization by macro-invertebrates on artificial substrate samplers

    Full text link
    The influence of exposure time upon macro-invertebrate colonization on modified Hester-Dendy substrate samplers was investigated over a 60-day period. The duration of exposure affected the number of individuals, taxa and community diversity. The numbers of individuals colonizing the samplers reached a maximum after 39 days and then began to decrease, due to the emergence of adult insects. Coefficients of variation for the four replicate samples retrieved each sampling day fluctuated extensively throughout the study. No tendencies toward increasing or decreasing coefficients of variation were noted with increasing time of sampler exposure. The number of taxa colonizing the samplers increased throughout the study period. The community diversity index was calculated for each sampling day and this function tended to increase throughout the same period. This supports the hypothesis that an exposure period of 6 weeks, as recommended by the United States Environmental Protection Agency, may not always provide adequate opportunity for a truly representative community of macro-invertebrates to colonize multiplate samplers. Many of the taxa were collected in quite substantial proportions after periods of absence or extreme sparseness. This is attributed to the growth of periphyton and the collection of other materials that created food and new habitats suitable for the colonization of new taxa. Investigation of the relationship between ‘equitability’ and length of exposure revealed that equitability did not vary like diversity with increased time of exposure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72073/1/j.1365-2427.1979.tb01522.x.pd

    On the evaluation at (−ι,ι) of the Tutte polynomial of a binary matroid

    Full text link
    Vertigan has shown that if MM is a binary matroid, then TM(ι,ι)|T_M(-\iota,\iota)|, the modulus of the Tutte polynomial of MM as evaluated in (ι,ι)(-\iota, \iota), can be expressed in terms of the bicycle dimension of MM. In this paper, we describe how the argument of the complex number TM(ι,ι)T_M(-\iota,\iota) depends on a certain Z4\mathbb{Z}_4-valued quadratic form that is canonically associated with MM. We show how to evaluate TM(ι,ι)T_M(-\iota,\iota) in polynomial time, as well as the canonical tripartition of MM and further related invariants

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Preparation and characterization of stable aqueous suspensions of up-converting Er3+/Yb3+-doped LiNbO3 nanocrystals

    Get PDF
    The preparation of LiNbO3:Er3+/Yb3+ nanocrystals and their up-conversion properties have been studied. It is demonstrated that polyethyleneimine- (PEI) assisted dispersion procedures allow obtaining stable aqueous LiNbO3:Er3+/Yb3+ powder suspensions, with average size particles well below the micron range (100–200 nm) and the isoelectric point of the suspension reaching values well above pH 7. After excitation of Yb3+ ions at a wavelength of 980 nm, the suspensions exhibit efficient, and stable, IR-to-visible (green and red) up-conversion properties, easily observed by the naked eye, very similar to those of the starting crystalline bulk material

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
    corecore