39 research outputs found

    International consensus recommendations on key outcome measures for organ preservation after (chemo)radiotherapy in patients with rectal cancer

    Get PDF
    Multimodal treatment strategies for patients with rectal cancer are increasingly including the possibility of organ preservation, through nonoperative management or local excision. Organ preservation strategies can enable patients with a complete response or near-complete clinical responses after radiotherapy with or without concomitant chemotherapy to safely avoid the morbidities associated with radical surgery, and thus to maintain anorectal function and quality of life. However, standardization of the key outcome measures of organ preservation strategies is currently lacking; this includes a lack of consensus of the optimal definitions and selection of primary end points according to the trial phase and design; the optimal time points for response assessment; response-based decision-making; follow-up schedules; use of specific anorectal function tests; and quality of life and patient-reported outcomes. Thus, a consensus statement on outcome measures is necessary to ensure consistency and facilitate more accurate comparisons of data from ongoing and future trials. Here, we have convened an international group of experts with extensive experience in the management of patients with rectal cancer, including organ preservation approaches, and used a Delphi process to establish the first international consensus recommendations for key outcome measures of organ preservation, in an attempt to standardize the reporting of data from both trials and routine practice in this emerging area.Patients with early-stage rectal cancer might potentially benefit from treatment with an organ-sparing approach, which preserves quality of life owing to avoidance of the need for permanent colostomy. Trials conducted to investigate this have so far been hampered by considerable inter-trial heterogeneity in several key features. In this Consensus Statement, the authors provide guidance on the optimal end points, response assessment time points, follow-up procedures and quality of life measures in an attempt to improve the comparability of clinical research in this area

    Radiation therapy and photodynamic therapy for biliary tract and ampullary carcinomas

    Get PDF
    The purpose of radiation therapy for unresectable biliary tract cancer is to prolong survival or prolong stent patency, and to provide palliation of pain. For unresectable bile duct cancer, there are a number of studies showing that radiation therapy is superior to the best supportive care. Although radiation therapy is used in many institutions, no large randomized controlled trials (RCTs) have been performed to date and the evidence level supporting the superiority of this treatment is low. Because long-term relief of jaundice is difficult without using biliary stenting, a combination of radiation therapy and stent placement is commonly used. As radiation therapy, external-beam radiation therapy is usually performed, but combined use of intraluminal brachytherapy with external beam radiation therapy is more useful for making the treatment more effective. There are many reports demonstrating improved response rates as well as extended survival and time to recurrence achieved by this combination therapy. Despite the low level of the evidence, this combination therapy is performed at many institutions. It is expected that multiinstitutional RCTs will be carried out. Unresectable gallbladder cancer with a large focus is usually extensive, and normal organs with high radio sensitivity exist contiguously with it. Therefore, only limited anticancer effects are to be expected from external beam radiation therapy for this type of cancer. The number of reports on ampullary cancer is small and the role of radiation therapy in this cancer has not been established. Combination treatment for ampullary cancer consists of either a single use of intraoperative radiation therapy, postoperative external beam radiation therapy or intraluminal brachytherapy, or a combination of two or three of these therapies. Intraoperative radiation therapy is superior in that it enables precise irradiation to the target site, thereby protecting adjacent highly radiosensitive normal tissues from irradiation. There are reports showing extended survival, although not significant, in groups undergoing intraoperative or postoperative radiation therapy compared with groups without radiation therapy. To date, there are no reports of large RCTs focusing on the significance of radiation therapy as a postoperative adjuvant treatment, so its usefulness as a postoperative adjuvant treatment is not proven. An alternative treatment is photodynamic therapy. There is an RCT demonstrating that, in unresectable bile duct cancer, extended survival and improved quality of life (QOL) have been achieved through a combination of photodynamic therapy and biliary stenting, compared with biliary stenting alone. Results from large RCTs are desired

    Chapter XII: Liver metastases: biology, diagnosis & treatment

    No full text

    The transformation of radiation oncology using real-time magnetic resonance guidance: A review

    No full text
    Radiation therapy (RT) is an essential component of effective cancer care and is used across nearly all cancer types. The delivery of RT is becoming more precise through rapid advances in both computing and imaging. The direct integration of magnetic resonance imaging (MRI) with linear accelerators represents an exciting development with the potential to dramatically impact cancer research and treatment. These impacts extend beyond improved imaging and dose deposition. Real-time MRI-guided RT is actively transforming the work flows and capabilities of virtually every aspect of RT. It has the opportunity to change entirely the delivery methods and response assessments of numerous malignancies. This review intends to approach the topic of MRI-based RT guidance from a vendor neutral and international perspective. It also aims to provide an introduction to this topic targeted towards oncologists without a speciality focus in RT. Speciality implications, areas for physician education and research opportunities are identified as they are associated with MRI-guided RT. The uniquely disruptive implications of MRI-guided RT are discussed and placed in context. We further aim to describe and outline important future changes to the speciality of radiation oncology that will occur with MRI-guided RT. The impacts on RT caused by MRI guidance include target identification, RT planning, quality assurance, treatment delivery, training, clinical workflow, tumour response assessment and treatment scheduling. In addition, entirely novel research areas that may be enabled by MRI guidance are identified for future investigation
    corecore