7 research outputs found

    A gauge model for quantum mechanics on a stratified space

    Full text link
    In the Hamiltonian approach on a single spatial plaquette, we construct a quantum (lattice) gauge theory which incorporates the classical singularities. The reduced phase space is a stratified K\"ahler space, and we make explicit the requisite singular holomorphic quantization procedure on this space. On the quantum level, this procedure furnishes a costratified Hilbert space, that is, a Hilbert space together with a system which consists of the subspaces associated with the strata of the reduced phase space and of the corresponding orthoprojectors. The costratified Hilbert space structure reflects the stratification of the reduced phase space. For the special case where the structure group is SU(2)\mathrm{SU}(2), we discuss the tunneling probabilities between the strata, determine the energy eigenstates and study the corresponding expectation values of the orthoprojectors onto the subspaces associated with the strata in the strong and weak coupling approximations.Comment: 38 pages, 9 figures. Changes: comments on the heat kernel and coherent states have been adde

    Holomorphic Factorization for a Quantum Tetrahedron

    Full text link
    We provide a holomorphic description of the Hilbert space H(j_1,..,j_n) of SU(2)-invariant tensors (intertwiners) and establish a holomorphically factorized formula for the decomposition of identity in H(j_1,..,j_n). Interestingly, the integration kernel that appears in the decomposition formula turns out to be the n-point function of bulk/boundary dualities of string theory. Our results provide a new interpretation for this quantity as being, in the limit of large conformal dimensions, the exponential of the Kahler potential of the symplectic manifold whose quantization gives H(j_1,..,j_n). For the case n=4, the symplectic manifold in question has the interpretation of the space of "shapes" of a geometric tetrahedron with fixed face areas, and our results provide a description for the quantum tetrahedron in terms of holomorphic coherent states. We describe how the holomorphic intertwiners are related to the usual real ones by computing their overlap. The semi-classical analysis of these overlap coefficients in the case of large spins allows us to obtain an explicit relation between the real and holomorphic description of the space of shapes of the tetrahedron. Our results are of direct relevance for the subjects of loop quantum gravity and spin foams, but also add an interesting new twist to the story of the bulk/boundary correspondence.Comment: 45 pages; published versio

    Essential self-adjointness: implications for determinism and the classical–quantum correspondence

    No full text
    It is argued that seemingly “merely technical” issues about the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have interesting implications for foundations problems in classical and quantum physics. For example, pursuing these technical issues reveals a sense in which quantum mechanics can cure some of the forms of indeterminism that crop up in classical mechanics; and at the same time it reveals the possibility of a form of indeterminism in quantum mechanics that is quite distinct from the indeterminism of state vector collapse. More generally, the examples considered indicate that the classical–quantum correspondence is more intricate and delicate than is generally appreciated. The aim of the article is to give a series of examples that reveal why the technical issues about self-adjointness are relevant to the philosophy of science and that help to make the issues accessible to philosophers of science

    Nierenbecken- und Harnleiterkarzinom

    No full text

    DNA Repair Enzymes as Promising Targets in Oncotherapy

    No full text

    Gravitation and general relativity at King’s College London

    No full text
    corecore