1 research outputs found
Conformal Field Theories, Representations and Lattice Constructions
An account is given of the structure and representations of chiral bosonic
meromorphic conformal field theories (CFT's), and, in particular, the
conditions under which such a CFT may be extended by a representation to form a
new theory. This general approach is illustrated by considering the untwisted
and -twisted theories, and respectively,
which may be constructed from a suitable even Euclidean lattice .
Similarly, one may construct lattices and by
analogous constructions from a doubly-even binary code . In the case when
is self-dual, the corresponding lattices are also. Similarly,
and are self-dual if and only if is. We show that
has a natural ``triality'' structure, which induces an
isomorphism and also a triality
structure on . For the Golay code,
is the Leech lattice, and the triality on is the symmetry which extends the natural action of (an
extension of) Conway's group on this theory to the Monster, so setting triality
and Frenkel, Lepowsky and Meurman's construction of the natural Monster module
in a more general context. The results also serve to shed some light on the
classification of self-dual CFT's. We find that of the 48 theories
and with central charge 24 that there are 39 distinct ones,
and further that all 9 coincidences are accounted for by the isomorphism
detailed above, induced by the existence of a doubly-even self-dual binary
code.Comment: 65 page