1 research outputs found

    Conformal Field Theories, Representations and Lattice Constructions

    Get PDF
    An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z2Z_2-twisted theories, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) respectively, which may be constructed from a suitable even Euclidean lattice Λ\Lambda. Similarly, one may construct lattices ΛC\Lambda_C and Λ~C\tilde\Lambda_C by analogous constructions from a doubly-even binary code CC. In the case when CC is self-dual, the corresponding lattices are also. Similarly, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) are self-dual if and only if Λ\Lambda is. We show that H(ΛC)H(\Lambda_C) has a natural ``triality'' structure, which induces an isomorphism H(Λ~C)≡H~(ΛC)H(\tilde\Lambda_C)\equiv\tilde H(\Lambda_C) and also a triality structure on H~(Λ~C)\tilde H(\tilde\Lambda_C). For CC the Golay code, Λ~C\tilde\Lambda_C is the Leech lattice, and the triality on H~(Λ~C)\tilde H(\tilde\Lambda_C) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.Comment: 65 page
    corecore