30 research outputs found

    Energy profiles and electricity flexibility potential in apartment buildings with electric vehicles – A Norwegian case study

    Get PDF
    Energy flexibility in buildings has the potential to reduce the grid burden of neighbourhoods, yet its practical implementation remains limited. This paper presents a data-based case study from Norway, examining the electricity flexibility potential of electric vehicles, within the context of apartment building loads and PV generation. The results highlight the significant electricity flexibility potential in apartment buildings with EVs, where EV charging can be shifted in time by means of a shared energy management system. Energy profiles are presented, showing how EV charging can increase the average electricity use in apartments by a factor of 1.5 and the power use by a factor of 3.5 to 8.6. Furthermore, the study demonstrates how electricity flexibility KPIs of optimised EV charging in apartment buildings are affected by different energy tariffs, PV generation, V2G technology, and the location of the billing meters. The simulated scenarios showed a maximum reduction of peak loads of 45 %, while a maximum of 38 % of the EV charging was covered by PV generation. The study confirms that residential EV charging emerges as a viable frontrunner in the practical realization of end-user flexibility, paving the way for effective solutions in real-life applications.publishedVersio

    Sympathetic cooling of 9Be+^9Be^+ and 24Mg+^{24}Mg^+ for quantum logic

    Full text link
    We demonstrate the cooling of a two species ion crystal consisting of one 9Be+^9Be^+ and one 24Mg+^{24}Mg^+ ion. Since the respective cooling transitions of these two species are separated by more than 30 nm, laser manipulation of one ion has negligible effect on the other even when the ions are not individually addressed. As such this is a useful system for re-initializing the motional state in an ion trap quantum computer without affecting the qubit information. Additionally, we have found that the mass difference between ions enables a novel method for detecting and subsequently eliminating the effects of radio frequency (RF) micro-motion.Comment: Submitted to PR

    Self-adapting method for the localization of quantum critical points using Quantum Monte Carlo techniques

    Full text link
    A generalization to the quantum case of a recently introduced algorithm (Y. Tomita and Y. Okabe, Phys. Rev. Lett. {\bf 86}, 572 (2001)) for the determination of the critical temperature of classical spin models is proposed. We describe a simple method to automatically locate critical points in (Quantum) Monte Carlo simulations. The algorithm assumes the existence of a finite correlation length in at least one of the two phases surrounding the quantum critical point. We illustrate these ideas on the example of the critical inter-chain coupling for which coupled antiferromagnetic S=1 spin chains order at T=0. Finite-size scaling relations are used to determine the exponents, ν=0.72(2)\nu=0.72(2) and η=0.038(3)\eta=0.038(3) in agreement with previous estimates.Comment: 5 pages, 3 figures, published versio

    Single Atom Cooling by Superfluid Immersion: A Non-Destructive Method for Qubits

    Full text link
    We present a scheme to cool the motional state of neutral atoms confined in sites of an optical lattice by immersing the system in a superfluid. The motion of the atoms is damped by the generation of excitations in the superfluid, and under appropriate conditions the internal state of the atom remains unchanged. This scheme can thus be used to cool atoms used to encode a series of entangled qubits non-destructively. Within realisable parameter ranges, the rate of cooling to the ground state is found to be sufficiently large to be useful in experiments.Comment: 14 pages, 9 figures, RevTeX
    corecore