98 research outputs found

    Efficient computation of the outer hull of a discrete path

    Get PDF
    We present here a linear time and space algorithm for computing the outer hull of any discrete path encoded by its Freeman chain code. The basic data structure uses an enriched version of the data structure introduced by Brlek, Koskas and Provençal: using quadtrees for representing points in the discrete plane ℤ×ℤ with neighborhood links, deciding path intersection is achievable in linear time and space. By combining the well-known wall follower algorithm for traversing mazes, we obtain the desired result with two passes resulting in a global linear time and space algorithm. As a byproduct, the convex hull is obtained as well

    Jet-quenching of the rotating heavy meson in a N{\mathcal{N}}=4 SYM plasma in presence of a constant electric field

    Full text link
    In this paper, we consider a rotating heavy quark-antiquark (qqˉq\bar{q}) pair in a N{\mathcal{N}}=4 SYM thermal plasma. We assume that qqˉq\bar{q} center of mass moves at the speed vv and furthermore they rotate around the center of mass. We use the AdS/CFT correspondence and consider the effect of external electromagnetic field on the motion of the rotating meson. Then we calculate the jet-quenching parameter corresponding to the rotating meson in the constant electric field

    25 Years of Self-organized Criticality: Concepts and Controversies

    Get PDF
    Introduced by the late Per Bak and his colleagues, self-organized criticality (SOC) has been one of the most stimulating concepts to come out of statistical mechanics and condensed matter theory in the last few decades, and has played a significant role in the development of complexity science. SOC, and more generally fractals and power laws, have attracted much comment, ranging from the very positive to the polemical. The other papers (Aschwanden et al. in Space Sci. Rev., 2014, this issue; McAteer et al. in Space Sci. Rev., 2015, this issue; Sharma et al. in Space Sci. Rev. 2015, in preparation) in this special issue showcase the considerable body of observations in solar, magnetospheric and fusion plasma inspired by the SOC idea, and expose the fertile role the new paradigm has played in approaches to modeling and understanding multiscale plasma instabilities. This very broad impact, and the necessary process of adapting a scientific hypothesis to the conditions of a given physical system, has meant that SOC as studied in these fields has sometimes differed significantly from the definition originally given by its creators. In Bak’s own field of theoretical physics there are significant observational and theoretical open questions, even 25 years on (Pruessner 2012). One aim of the present review is to address the dichotomy between the great reception SOC has received in some areas, and its shortcomings, as they became manifest in the controversies it triggered. Our article tries to clear up what we think are misunderstandings of SOC in fields more remote from its origins in statistical mechanics, condensed matter and dynamical systems by revisiting Bak, Tang and Wiesenfeld’s original papers

    Effects of sleep deprivation on neural functioning: an integrative review

    Get PDF
    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Immune cell gene signatures for profiling the microenvironment of solid tumors

    Full text link
    The immune composition of the tumor microenvironment regulates processes including angiogenesis, metastasis, and the response to drugs or immunotherapy. To facilitate the characterization of the immune component of tumors from transcriptomics data, a number of immune cell transcriptome signatures have been reported that are made up of lists of marker genes indicative of the presence a given immune cell population. The majority of these gene signatures have been defined through analysis of isolated blood cells. However, blood cells do not reflect the differentiation or activation state of similar cells within tissues, including tumors, and consequently markers derived from blood cells do not necessarily transfer well to tissues. To address this issue, we generated a set of immune gene signatures derived directly from tissue transcriptomics data using a network-based deconvolution approach. We define markers for seven immune cell types, collectively named ImSig, and demonstrate how these markers can be used for the quantitative estimation of the immune cell content of tumor and nontumor tissue samples. The utility of ImSig is demonstrated through the stratification of melanoma patients into subgroups of prognostic significance and the identification of immune cells with the use of single-cell RNA-sequencing data derived from tumors. Use of ImSig is facilitated by an R package (imsig)
    corecore