955 research outputs found
Ground-state properties of tubelike flexible polymers
In this work we investigate structural properties of native states of a
simple model for short flexible homopolymers, where the steric influence of
monomeric side chains is effectively introduced by a thickness constraint. This
geometric constraint is implemented through the concept of the global radius of
curvature and affects the conformational topology of ground-state structures. A
systematic analysis allows for a thickness-dependent classification of the
dominant ground-state topologies. It turns out that helical structures,
strands, rings, and coils are natural, intrinsic geometries of such tubelike
objects
Development of the OPgun™ for bombardment of animal tissues
A simple and inexpensive particle-bombardment device, the OPgun™, was constructed for the
delivery of DNA into animal tissues. This device is based on the particle-inflow gun first described
for plant-cell transfection. The delivery of tungsten particles into the epidermis of the mouse ear,
without the use of vacuum and without causing damage to the tissue, was demonstrated. The system
was also shown to be capable of inducing antibodies to a foreign gene in mice.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi.
Adobe Acrobat X Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format
Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies
The surface and electronic structure of MOCVD-grown layers of
Ga(0.92)In(0.08)N have been investigated by means of photoemission. An
additional feature at the valence band edge, which can be ascribed to the
presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface
was prepared by argon ion sputtering and annealing. Stability of chemical
composition of the investigated surface subjected to similar ion etching was
proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure
Neutrino mass from cosmology: Impact of high-accuracy measurement of the Hubble constant
Non-zero neutrino mass would affect the evolution of the Universe in
observable ways, and a strong constraint on the mass can be achieved using
combinations of cosmological data sets. We focus on the power spectrum of
cosmic microwave background (CMB) anisotropies, the Hubble constant H_0, and
the length scale for baryon acoustic oscillations (BAO) to investigate the
constraint on the neutrino mass, m_nu. We analyze data from multiple existing
CMB studies (WMAP5, ACBAR, CBI, BOOMERANG, and QUAD), recent measurement of H_0
(SHOES), with about two times lower uncertainty (5%) than previous estimates,
and recent treatments of BAO from the Sloan Digital Sky Survey (SDSS). We
obtained an upper limit of m_nu < 0.2eV (95% C.L.), for a flat LambdaCDM model.
This is a 40% reduction in the limit derived from previous H_0 estimates and
one-third lower than can be achieved with extant CMB and BAO data. We also
analyze the impact of smaller uncertainty on measurements of H_0 as may be
anticipated in the near term, in combination with CMB data from the Planck
mission, and BAO data from the SDSS/BOSS program. We demonstrate the
possibility of a 5 sigma detection for a fiducial neutrino mass of 0.1eV or a
95% upper limit of 0.04eV for a fiducial of m_nu = 0eV. These constraints are
about 50% better than those achieved without external constraint. We further
investigate the impact on modeling where the dark-energy equation of state is
constant but not necessarily -1, or where a non-flat universe is allowed. In
these cases, the next-generation accuracies of Planck, BOSS, and 1% measurement
of H_0 would all be required to obtain the limit m_nu < 0.05 - 0.06eV (95%
C.L.) for the fiducial of m_nu = 0eV. The independence of systematics argues
for pursuit of both BAO and H_0 measurements.Comment: 22 pages, 6 figures, 12 table
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
Experimental evidence for 56Ni-core breaking from the low-spin structure of the N=Z nucleus 58Cu
Low-spin states in the odd-odd N=Z nucleus 58Cu were investigated with the
58Ni(p,n gamma)58Cu fusion evaporation reaction at the FN-tandem accelerator in
Cologne. Seventeen low spin states below 3.6 MeV and 17 new transitions were
observed. Ten multipole mixing ratios and 17 gamma-branching ratios were
determined for the first time. New detailed spectroscopic information on the
2+,2 state, the Isobaric Analogue State (IAS) of the 2+,1,T=1 state of 58Ni,
makes 58Cu the heaviest odd-odd N=Z nucleus with known B(E2;2+,T=1 --> 0+,T=1)
value. The 4^+ state at 2.751 MeV, observed here for the first time, is
identified as the IAS of the 4+,1,T=1 state in 58Ni. The new data are compared
to full pf-shell model calculations with the novel GXPF1 residual interaction
and to calculations within a pf5/2 configurational space with a residual
surface delta interaction. The role of the 56Ni core excitations for the
low-spin structure in 58Cu is discussed.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya
Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
- …