766 research outputs found
Production and decay of the Standard Model Higgs Bososn at LEP200
We collect and update theoretical predictions for the production rate and
decay branching fractions of the Standard Model Higgs boson that will be
relevant for the Higgs search at LEP200. We make full use of the present
knowledge of radiative corrections. We estimate the systematics arising from
theoretical and experimental uncertainties.Comment: 27 page
Two-Loop Corrections to the Fermionic Decay Rates of the Standard-Model Higgs Boson
Low- and intermediate mass Higgs bosons decay preferably into fermion pairs.
The one-loop electroweak corrections to the respective decay rates are
dominated by a flavour-independent term of . We calculate
the two-loop gluon correction to this term. It turns out that this correction
screens the leading high- behaviour of the one-loop result by roughly
10\%. We also present the two-loop QCD correction to the contribution induced
by a pair of fourth-generation quarks with arbitrary masses. As expected, the
inclusion of the QCD correction considerably reduces the renormalization-scheme
dependence of the prediction.Comment: 14 pages, latex, figures 2-5 appended, DESY 94-08
Heavy-Higgs Lifetime at Two Loops
The Standard-Model Higgs boson with mass decays almost
exclusively to pairs of and bosons. We calculate the dominant two-loop
corrections of to the partial widths of these decays. In
the on-mass-shell renormalization scheme, the correction factor is found to be
, where the second term is the
one-loop correction. We give full analytic results for all divergent two-loop
Feynman diagrams. A subset of finite two-loop vertex diagrams is computed to
high precision using numerical techniques. We find agreement with a previous
numerical analysis. The above correction factor is also in line with a recent
lattice calculation.Comment: 26 pages, 6 postscript figures. The complete paper including figures
is also available via WWW at
http://www.physik.tu-muenchen.de/tumphy/d/T30d/PAPERS/TUM-HEP-247-96.ps.g
Ising spins coupled to a four-dimensional discrete Regge skeleton
Regge calculus is a powerful method to approximate a continuous manifold by a
simplicial lattice, keeping the connectivities of the underlying lattice fixed
and taking the edge lengths as degrees of freedom. The discrete Regge model
employed in this work limits the choice of the link lengths to a finite number.
To get more precise insight into the behavior of the four-dimensional discrete
Regge model, we coupled spins to the fluctuating manifolds. We examined the
phase transition of the spin system and the associated critical exponents. The
results are obtained from finite-size scaling analyses of Monte Carlo
simulations. We find consistency with the mean-field theory of the Ising model
on a static four-dimensional lattice.Comment: 19 pages, 7 figure
Two-Loop O(alpha_s G_F M_Q^2) Heavy-Quark Corrections to the Interactions between Higgs and Intermediate Bosons
By means of a low-energy theorem, we analyze at O(alpha_s G_F M_Q^2) the
shifts in the Standard-Model W^+W^-H and ZZH couplings induced by virtual
high-mass quarks, Q, with M_Q >> M_Z, M_H, which includes the top quark.
Invoking the improved Born approximation, we then find the corresponding
corrections to various four- and five-point Higgs-boson production and decay
processes which involve the W^+W^-H and ZZH vertices with one or both of the
gauge bosons being connected to light-fermion currents, respectively. This
includes e^+e^- -> f anti-f H via Higgs-strahlung, via W^+W^- fusion (with f =
nu_e), and via ZZ fusion (with f = e), as well as H -> 2V -> 4f (with V = W,
Z).Comment: 20 pages (Latex); Physical Review D (to appear
Chiral and Gluon Condensates at Finite Temperature
We investigate the thermal behaviour of gluon and chiral condensates within
an effective Lagrangian of pseudoscalar mesons coupled to a scalar glueball.
This Lagrangian mimics the scale and chiral symmetries of QCD. (Submitted to Z.
Phys. C)Comment: 20 pages + 7 figures (uuencoded compressed postscript files),
University of Regensburg preprint TPR-94-1
Inhomogeneous chiral symmetry breaking in noncommutative four fermion interactions
The generalization of the Gross-Neveu model for noncommutative 3+1 space-time
has been analyzed. We find indications that the chiral symmetry breaking occurs
for an inhomogeneous background as in the LOFF phase in condensed matter.Comment: 17 pages, 2 figures, published version, minor correction
Disorder Effects in Two-Dimensional d-wave Superconductors
Influence of weak nonmagnetic impurities on the single-particle density of
states of two-dimensional electron systems with a conical
spectrum is studied. We use a nonperturbative approach, based on replica trick
with subsequent mapping of the effective action onto a one-dimensional model of
interacting fermions, the latter being treated by Abelian and non-Abelian
bosonization methods. It is shown that, in a d-wave superconductor, the density
of states, averaged over randomness, follows a nontrivial power-law behavior
near the Fermi energy: . The exponent
is calculated for several types of disorder. We demonstrate that the
property is a direct consequence of a {\it continuous} symmetry
of the effective fermionic model, whose breakdown is forbidden in two
dimensions. As a counter example, we consider another model with a conical
spectrum - a two-dimensional orbital antiferromagnet, where static disorder
leads to a finite due to breakdown of a {\it discrete}
(particle-hole) symmetry.Comment: 24 pages, 3 figures upon request, RevTe
Transmogrifying Fuzzy Vortices
We show that the construction of vortex solitons of the noncommutative
Abelian-Higgs model can be extended to a critically coupled gauged linear sigma
model with Fayet-Illiopolous D-terms. Like its commutative counterpart, this
fuzzy linear sigma model has a rich spectrum of BPS solutions. We offer an
explicit construction of the degree static semilocal vortex and study in
some detail the infinite coupling limit in which it descends to a degree
\C\Pk^{N} instanton. This relation between the fuzzy vortex and
noncommutative lump is used to suggest an interpretation of the noncommutative
sigma model soliton as tilted D-strings stretched between an NS5-brane and a
stack of D3-branes in type IIB superstring theory.Comment: 21 pages, 4 figures, LaTeX(JHEP3
Numerical comparison of two approaches for the study of phase transitions in small systems
We compare two recently proposed methods for the characterization of phase
transitions in small systems. The validity and usefulness of these approaches
are studied for the case of the q=4 and q=5 Potts model, i.e. systems where a
thermodynamic limit and exact results exist. Guided by this analysis we discuss
then the helix-coil transition in polyalanine, an example of structural
transitions in biological molecules.Comment: 16 pages and 7 figure
- …