74 research outputs found

    Leptons and photons at the LHC: cascades through spinless adjoints

    Get PDF
    We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along two universal extra dimensions compactified on the chiral square. Cascade decays of spinless adjoints proceed through tree-level 3-body decays involving leptons as well as one-loop 2-body decays involving photons. As a result, spectacular events with as many as six charged leptons, or one photon plus four charged leptons are expected to be observed at the LHC. Unusual events with relatively large branching fractions include three leptons of same charge plus one lepton of opposite charge, or one photon plus two leptons of same charge. We estimate the current limit from the Tevatron on the compactification scale, set by searches for trilepton events, to be around 270 GeV.Comment: 33+1 pages, 14 figure

    New Topflavor Models with Seesaw Mechanism

    Get PDF
    New class of models are constructed in which the third family quarks, but not leptons, experience a new SU(2) or U(1) gauge force. Anomaly cancellation enforces the introduction of spectator quarks so that the top and bottom masses are naturally generated via a seesaw mechanism. We find the new contributions to the (S,T,U) parameters and Zbb vertex to be generically small. We further analyze how the reasonable flavor mixing pattern can be generated to ensure the top-seesaw mechanism and sufficiently suppress the flavor-changing effects for light quarks. Collider signatures for the light Higgs boson and top quark are also discussed.Comment: To match the version in Rapid Communication of PRD, RevTex 5p

    Radiative corrections to the lightest KK states in the T^2/(Z_2\times Z_2') orbifold

    Get PDF
    We study radiative corrections localized in the fixed points of the orbifold for the field theory in six dimensions with two dimensions compactified on the T2/(Z2×Z2)T_2/(Z_2\times Z_2') orbifold in a specific realistic model for low energy physics that solves the proton decay and neutrino mass problem. We calculate corrections to the masses of the lightest stable KK modes, which could be the candidates for the dark matter.Comment: 14 pages, 2 figure

    b-physics signals of the lightest CP-odd Higgs in the NMSSM at large tan beta

    Full text link
    We investigate the low energy phenomenology of the lighter pseudoscalar A10A_1^0 in the NMSSM. The A10A_1^0 mass can naturally be small due to a global U(1)RU(1)_R symmetry of the Higgs potential, which is only broken by trilinear soft terms. The A10A_1^0 mass is further protected from renormalization group effects in the large tanβ\tan \beta limit. We calculate the bsA10b \to s A_1^0 amplitude at leading order in tanβ\tan \beta and work out the contributions to rare KK, BB and radiative Υ\Upsilon-decays and BBˉB -\bar B mixing. We obtain constraints on the A10A_1^0 mass and couplings and show that masses down to O(10){\cal{O}}(10) MeV are allowed. The bb-physics phenomenology of the NMSSM differs from the MSSM in the appearance of sizeable renormalization effects from neutral Higgses to the photon and gluon dipole operators and the breakdown of the MSSM correlation between the Bsμ+μB_s \to \mu^+ \mu^- branching ratio and BsBˉsB_s - \bar B_s mixing. For A10A_1^0 masses above the tau threshold the A10A_1^0 can be searched for in bsτ+τb \to s \tau^+ \tau^- processes with branching ratios \lsim 10^{-3}.Comment: 18 pages, 3 figures; references adde

    Uplifted supersymmetric Higgs region

    Full text link
    We show that the parameter space of the Minimal Supersymmetric Standard Model includes a region where the down-type fermion masses are generated by the loop-induced couplings to the up-type Higgs doublet. In this region the down-type Higgs doublet does not acquire a vacuum expectation value at tree level, and has sizable couplings in the superpotential to the tau leptons and bottom quarks. Besides a light standard-like Higgs boson, the Higgs spectrum includes the nearly degenerate states of a heavy spin-0 doublet which can be produced through their couplings to the bb quark and decay predominantly into \tau^+\tau^- or \tau\nu.Comment: 14 pages; Signs in Eqns. (3.1) and (4.2) corrected, appendix include

    Rare Decays with a Light CP-Odd Higgs Boson in the NMSSM

    Full text link
    We have previously proposed a light pseudoscalar Higgs boson in the next-to-minimal supersymmetric standard model (NMSSM), the A_1^0, as a candidate to explain the HyperCP observations in Sigma^+ -> p mu^+ mu^-. In this paper we calculate the rates for several other rare decay modes that can help confirm or refute this hypothesis. The first modes we evaluate are K_L -> pi pi A_1^0, which are interesting because they are under study by the KTeV Collaboration. We next turn to eta -> pi pi A_1^0, which are interesting because they are independent of the details of the flavor-changing sector of the NMSSM and may be accessible at DAPhNE. For completeness, we also evaluate Omega^- -> Xi^- A_1^0.Comment: 17 pages, 11 figure

    Minimal Composite Higgs Model with Light Bosons

    Full text link
    We analyze a composite Higgs model with the minimal content that allows a light Standard-Model-like Higgs boson, potentially just above the current LEP limit. The Higgs boson is a bound state made up of the top quark and a heavy vector-like quark. The model predicts that only one other bound state may be lighter than the electroweak scale, namely a CP-odd neutral scalar. Several other composite scalars are expected to have masses in the TeV range. If the Higgs decay into a pair of CP-odd scalars is kinematically open, then this decay mode is dominant, with important implications for Higgs searches. The lower bound on the CP-odd scalar mass is loose, in some cases as low as \sim 100 MeV, being set only by astrophysical constraints.Comment: 33 pages, latex. Corrections in eqs. 3.21, 3.23, 4.1, 4.5-10. One figure adde

    Higgs Signal for h to aa at Hadron Colliders

    Full text link
    We assess the prospect of observing a neutral Higgs boson at hadron colliders in its decay to two spin-zero states, a, for a Higgs mass of 90-130 GeV, when produced in association with a W or Z boson. Such a decay is allowed in extensions of the MSSM with CP-violating interactions and in the NMSSM, and can dominate Higgs boson final states, thereby evading the LEP constraints on standard Higgs boson production. The light spin-zero state decays primarily via a to bb and tau+tau-, so this signal channel retains features distinct from the main backgrounds. Our study shows that at the Tevatron, there may be potential to observe a few events in the bb tau+tau- or bbbb channels with relatively small background, although this observation would be statistically limited. At the LHC, the background problem is more severe, but with cross sections and integrated luminosities orders of magnitude larger than at the Tevatron, the observation of a Higgs boson in this decay mode would be possible. The channel h to aa to bbbb would provide a large statistical significance, with a signal-to-background ratio on the order of 1:2. In these searches, the main challenge would be to retain the adequate tagging efficiency of b's and tau's in the low p_T region.Comment: Version to be published in JHEP. 20 pages, 5 figure

    Natural Theories of Ultra-Low Mass PNGB's: Axions and Quintessence

    Full text link
    We consider the Wilson Line PNGB which arises in a U(1)^N gauge theory, abstracted from a latticized, periodically compactified extra dimension U(1). Planck scale breaking of the PNGB's global symmetry is suppressed, providing natural candidates for the axion and quintessence. We construct an explicit model in which the axion may be viewed as the 5th component of the U(1)_Y gauge field in a 1+4 latticized periodically compactified extra dimension. We also construct a quintessence PNGB model where the ultra-low mass arises from Planck-scale suppressed physics itself.Comment: 20 pages, fixed typo and reference

    Topped MAC with extra dimensions?

    Full text link
    We perform the most attractive channel (MAC) analysis in the top mode standard model with TeV-scale extra dimensions, where the standard model gauge bosons and the third generation of quarks and leptons are put in D(=6,8,10,...) dimensions. In such a model, bulk gauge couplings rapidly grow in the ultraviolet region. In order to make the scenario viable, only the attractive force of the top condensate should exceed the critical coupling, while other channels such as the bottom and tau condensates should not. We then find that the top condensate can be the MAC for D=8, whereas the tau condensation is favored for D=6. The analysis for D=10 strongly depends on the regularization scheme. We predict masses of the top (m_t) and the Higgs (m_H), m_t=172-175 GeV and m_H=176-188 GeV for D=8, based on the renormalization group for the top Yukawa and Higgs quartic couplings with the compositeness conditions at the scale where the bulk top condenses. The Higgs boson in such a characteristic mass range will be immediately discovered in H -> WW^(*)/ZZ^(*) once the LHC starts.Comment: REVTEX4, 24 pages, 21 figures, to appear in PRD. The title is changed in PRD. One reference added, typos correcte
    corecore