857 research outputs found
Organic Ring Oscillators with Sub-200 ns Stage Delay Based on a Solution-Processed p-type Semiconductor Blend
High-frequency ring oscillators with sub-microsecond stage delay fabricated from spin-coated films of a specially formulated small-molecule/host-polymer blend are reported. Contacts and interconnects are patterned by photolithography with plasma etching used for creating vias and removing excess material to reduce parasitic effects. The characteristics of transistors with 4.6 μm channel length scale linearly with channel width over the range 60�2160 μm. Model device parameters extracted using Silvaco's Universal Organic Thin Film Transistor (UOTFT) Model yield values of hole mobility increasing from 1.9 to 2.6 cm2 Vs�1 as gate voltage increased. Simulated and fabricated Vgs = 0 inverters predict that the technology is capable of fabricating 5-stage ring oscillators operating above 100 kHz. Initial designs operated mainly at frequencies in the range 250�300 kHz, due to smaller parasitic gate overlap capacitances and higher supply voltages than assumed in the simulations. A design incorporating graded inverter sizes operates at frequencies above 400 kHz with the best reaching 529 kHz. The corresponding stage delay of 189 ns is the shortest reported to date for a solution-processed p-type semiconductor and compares favorably with similar circuits based on evaporated small molecules. Significant further improvements are identified which could lead to the fabrication of digital circuits that operate at much higher bit rates than previously reported
Emerging investigator series : Towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health
Use of reclaimed wastewater for agricultural irrigation is seen as an attractive option to meet agricultural water demands of a growing number of countries suffering from water scarcity. However, reclaimed wastewater contains pollutants which are introduced to the agro-environment during the irrigation process. While water reuse guidelines do consider selected classes of pollutants, they do not account for the presence of pollutants of emerging concern such as pharmaceuticals and the potential risks these may pose. Here we use source-pathway-receptor analysis (S-P-R) to develop a holistic framework for evaluating the impacts of pharmaceuticals, present in wastewater used for agricultural irrigation, on human and ecosystem health and evaluate the data availability for the framework components. The developed framework comprised of 34 processes and compartments but a good level of knowledge was available for only five of these suggesting that currently it is not possible to fully establish the impacts of pharmaceuticals in wastewater irrigation systems. To address this, work is urgently needed to understand the fate and transport of pharmaceuticals in arable soil systems and the effects of chronic low-level exposure to these substances on microbes, invertebrates, plants, wildlife and humans. In addition, research pertaining to the fate, uptake and effects of pharmaceutical mixtures and metabolites is lacking as well as data on bio-accessibility of pharmaceuticals after ingestion. Scientific advancements in the five areas prioritised in terms of future research are needed before we are able to fully quantify the agricultural and human health risks associated with reclaimed wastewater use
Squeezing in multi-mode nonlinear optical state truncation
In this paper, we show that multi-mode qubit states produced via nonlinear
optical state truncation driven by classical external pumpings exhibit
squeezing condition. We restrict our discussions to the two and three-mode
cases.Comment: 7 pages, 5 eps figures. Revised manuscript. Accepted for publication
in Phys. Lett.
Polyakov Loops versus Hadronic States
The order parameter for the pure Yang-Mills phase transition is the Polyakov
loop which encodes the symmetries of the Z_N center of the SU(N) gauge group.
On the other side the physical degrees of freedom of any asymptotically free
gauge theory are hadronic states. Using the Yang-Mills trace anomaly and the
exact Z_N symmetry we construct a model able to communicate to the hadrons the
information carried by the order parameter.Comment: RevTex4 2-col., 6 pages, 2 figures. Typos fixed and added a paragraph
in the conclusion
Effects of soil properties on the uptake of pharmaceuticals into earthworms
AbstractPharmaceuticals can enter the soil environment when animal slurries and sewage sludge are applied to land as a fertiliser or during irrigation with contaminated water. These pharmaceuticals may then be taken up by soil organisms possibly resulting in toxic effects and/or exposure of organisms higher up the food chain. This study investigated the influence of soil properties on the uptake and depuration of pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in the earthworm Eisenia fetida. The uptake and accumulation of pharmaceuticals into E. fetida changed depending on soil type. Orlistat exhibited the highest pore water based bioconcentration factors (BCFs) and displayed the largest differences between soil types with BCFs ranging between 30.5 and 115.9. For carbamazepine, diclofenac and fluoxetine BCFs ranged between 1.1 and 1.6, 7.0 and 69.6 and 14.1 and 20.4 respectively. Additional analysis demonstrated that in certain treatments the presence of these chemicals in the soil matrices changed the soil pH over time, with a statistically significant pH difference to control samples. The internal pH of E. fetida also changed as a result of incubation in pharmaceutically spiked soil, in comparison to the control earthworms. These results demonstrate that a combination of soil properties and pharmaceutical physico-chemical properties are important in terms of predicting pharmaceutical uptake in terrestrial systems and that pharmaceuticals can modify soil and internal earthworm chemistry which may hold wider implications for risk assessment
Partial Deconfinement in Color Superconductivity
We analyze the fate of the unbroken SU(2) color gauge interactions for 2
light flavors color superconductivity at non zero temperature. Using a simple
model we compute the deconfining/confining critical temperature and show that
is smaller than the critical temperature for the onset of the superconductive
state itself. The breaking of Lorentz invariance, induced already at zero
temperature by the quark chemical potential, is shown to heavily affect the
value of the critical temperature and all of the relevant features related to
the deconfining transition. Modifying the Polyakov loop model to describe the
SU(2) immersed in the diquark medium we argue that the deconfinement transition
is second order. Having constructed part of the equation of state for the 2
color superconducting phase at low temperatures our results are relevant for
the physics of compact objects featuring a two flavor color superconductive
state.Comment: 9 pp, 4 eps-figs, version to appear in PR
Variational Approach to the Modulational Instability
We study the modulational stability of the nonlinear Schr\"odinger equation
(NLS) using a time-dependent variational approach. Within this framework, we
derive ordinary differential equations (ODEs) for the time evolution of the
amplitude and phase of modulational perturbations. Analyzing the ensuing ODEs,
we re-derive the classical modulational instability criterion. The case
(relevant to applications in optics and Bose-Einstein condensation) where the
coefficients of the equation are time-dependent, is also examined
Wavy Strings: Black or Bright?
Recent developments in string theory have brought forth a considerable
interest in time-dependent hair on extended objects. This novel new hair is
typically characterized by a wave profile along the horizon and angular
momentum quantum numbers in the transverse space. In this work, we
present an extensive treatment of such oscillating black objects, focusing on
their geometric properties. We first give a theorem of purely geometric nature,
stating that such wavy hair cannot be detected by any scalar invariant built
out of the curvature and/or matter fields. However, we show that the tidal
forces detected by an infalling observer diverge at the `horizon' of a black
string superposed with a vibration in any mode with . The same
argument applied to longitudinal () waves detects only finite tidal
forces. We also provide an example with a manifestly smooth metric, proving
that at least a certain class of these longitudinal waves have regular
horizons.Comment: 45 pages, latex, no figure
Low Energy Theory for 2 flavors at High Density QCD
We construct the effective Lagrangian describing the low energy excitations
for Quantum Chromodynamics with two flavors at high density. The non-linear
realization framework is employed to properly construct the low energy
effective theory. The light degrees of freedom, as required by 't Hooft anomaly
conditions, contain massless fermions which we properly include in the
effective Lagrangian. We also provide a discussion of the linearly realized
Lagrangian.Comment: 17 pages, RevTeX format, references added. To appear in Phys. Rev.
The acceleration of the universe and the physics behind it
Using a general classification of dark enegy models in four classes, we
discuss the complementarity of cosmological observations to tackle down the
physics beyond the acceleration of our universe. We discuss the tests
distinguishing the four classes and then focus on the dynamics of the
perturbations in the Newtonian regime. We also exhibit explicitely models that
have identical predictions for a subset of observations.Comment: 18 pages, 18 figure
- …