11 research outputs found

    Laser plasma diagnostics of dense plasmas

    Full text link
    The authors describe several experiments on Nova that use laser-produced plasmas to generate x-rays capable of backlighting dense, cold plasmas (p {approximately} 1--3 gm/cm{sup 3}, kT {approximately} 5--10 eV, and areal density {rho}{ell}{approximately} 0.01--0.05 g/cm{sup 2}). The x-rays used vary over a wide range of h{nu}, from 80 eV (X-ray laser) to 9 keV. This allows probing of plasmas relevant to many hydrodynamic experiments. Typical diagnostics are 100 ps pinhole framing cameras for a long pulse backlighter and a time-integrated CCD camera for a short pulse backlighter

    MicroRNAs Play a Critical Role in Tooth Development

    No full text
    MicroRNAs are known to regulate gene function in many tissues and organs, but their expression and function, if any, in tooth development are elusive. We sought to identify them by microRNA screening analyses and reveal their overall roles by inactivating Dicer1 in the dental epithelium and mesenchyme. Discrete sets of microRNAs are expressed in molars compared with incisors as well as epithelium compared with mesenchyme. Conditional knockout (cKO) of Dicer1 (mature microRNAs) in the dental epithelium of the Pitx2-Cre mouse results in multiple and branched enamel-free incisors and cuspless molars, and change in incisor patterning and in incisor and molar size and shape. Analyses of differentiating dental epithelial markers reveal a defect in ameloblast differentiation. Conversely, the cervical loop (stem cell niche) is expanded in Dicer1 cKO. These results demonstrate that tooth development is tightly controlled by microRNAs and that specific microRNAs regulate tooth epithelial stem cell differentiation
    corecore