40,436 research outputs found

    Impact of composite plates: Analysis of stresses and forces

    Get PDF
    The foreign object damage resistance of composite fan blades was studied. Edge impact stresses in an anisotropic plate were first calculated incorporating a constrained layer damping model. It is shown that a very thin damping layer can dramatically decrease the maximum normal impact stresses. A multilayer model of a composite plate is then presented which allows computation of the interlaminar normal and shear stresses. Results are presented for the stresses due to a line impact load normal to the plane of a composite plate. It is shown that significant interlaminar tensile stresses can develop during impact. A computer code was developed for this problem using the fast Fourier transform. A marker and cell computer code were also used to investigate the hydrodynamic impact of a fluid slug against a wall or turbine blade. Application of fluid modeling of bird impact is reviewed

    Photon reabsorption in fluorescent solar collectors

    No full text
    Understanding photon transport losses in fluorescence solar collectors is very important for increasing optical efficiencies. We present an analytical expression to characterize photon reabsorption in fluorescent solar collectors, which represent a major source of photon loss. A particularly useful universal form of this expression is found in the limit of high reabsorption, which gives the photon reabsorption probability in a simple form as a function of the absorption coefficient and the optical étendue of the emitted photon beam. Our mathematical model predicts fluorescence spectra emitted from the collector edge, which are in excellent agreement with experiment and provide an effective characterization tool for photon transport in light absorbing media

    Transfer Learning for Multi-language Twitter Election Classification

    Get PDF
    Both politicians and citizens are increasingly embracing social media as a means to disseminate information and comment on various topics, particularly during significant political events, such as elections. Such commentary during elections is also of interest to social scientists and pollsters. To facilitate the study of social media during elections, there is a need to automatically identify posts that are topically related to those elections. However, current studies have focused on elections within English-speaking regions, and hence the resultant election content classifiers are only applicable for elections in countries where the predominant language is English. On the other hand, as social media is becoming more prevalent worldwide, there is an increasing need for election classifiers that can be generalised across different languages, without building a training dataset for each election. In this paper, based upon transfer learning, we study the development of effective and reusable election classifiers for use on social media across multiple languages. We combine transfer learning with different classifiers such as Support Vector Machines (SVM) and state-of-the-art Convolutional Neural Networks (CNN), which make use of word embedding representations for each social media post. We generalise the learned classifier models for cross-language classification by using a linear translation approach to map the word embedding vectors from one language into another. Experiments conducted over two election datasets in different languages show that without using any training data from the target language, linear translations outperform a classical transfer learning approach, namely Transfer Component Analysis (TCA), by 80% in recall and 25% in F1 measure

    Prospects for Higgs Searches via VBF at the LHC with the ATLAS Detector

    Full text link
    We report on the potential for the discovery of a Standard Model Higgs boson with the vector boson fusion mechanism in the mass range 115 with the ATLAS experiment at the LHC. Feasibility studies at hadron level followed by a fast detector simulation have been performed for H\to W^{(*)}W^{(*)}\to l^+l^-\sla{p_T}, H→γγH\to\gamma\gamma and H→ZZ→l+l−qqˉH\to ZZ\to l^+l^-q\bar{q}. The results obtained show a large discovery potential in the range 115. Results obtained with multivariate techniques are reported for a number of channels.Comment: 14 pages, 4 figures, contributed to 2003 Les Houches Workshop on Physics at TeV Colliders. Incorporated comments from ATLAS referee

    An Evolving Entropy Floor in the Intracluster Gas?

    Full text link
    Non-gravitational processes, such as feedback from galaxies and their active nuclei, are believed to have injected excess entropy into the intracluster gas, and therefore to have modified the density profiles in galaxy clusters during their formation. Here we study a simple model for this so-called preheating scenario, and ask (i) whether it can simultaneously explain both global X-ray scaling relations and number counts of galaxy clusters, and (ii) whether the amount of entropy required evolves with redshift. We adopt a baseline entropy profile that fits recent hydrodynamic simulations, modify the hydrostatic equilibrium condition for the gas by including approx. 20% non-thermal pressure support, and add an entropy floor K_0 that is allowed to vary with redshift. We find that the observed luminosity-temperature (L-T) relations of low-redshift (z=0.05) HIFLUGCS clusters and high-redshift (z=0.8) WARPS clusters are best simultaneously reproduced with an evolving entropy floor of K_0(z)=341(1+z)^{-0.83}h^{-1/3} keV cm^2. If we restrict our analysis to the subset of bright (kT > 3 keV) clusters, we find that the evolving entropy floor can mimic a self-similar evolution in the L-T scaling relation. This degeneracy with self-similar evolution is, however, broken when (0.5 < kT < 3 keV) clusters are also included. The approx. 60% entropy increase we find from z=0.8 to z=0.05 is roughly consistent with that expected if the heating is provided by the evolving global quasar population. Using the cosmological parameters from the WMAP 3-year data with sigma_8=0.76, our best-fit model underpredicts the number counts of the X-ray galaxy clusters compared to those derived from the 158 deg^2 ROSAT PSPC survey. Treating sigma_8 as a free parameter, we find a best-fit value of sigma_8=0.80+/- 0.02.Comment: 14 emulateapj pages with 9 figures, submitted to Ap

    The strong influence of substrate conductivity on droplet evaporation

    Get PDF
    We report the results of physical experiments that demonstrate the strong influence of the thermal conductivity of the substrate on the evaporation of a pinned droplet. We show that this behaviour can be captured by a mathematical model including the variation of the saturation concentration with temperature, and hence coupling the problems for the vapour concentration in the atmosphere and the temperature in the liquid and the substrate. Furthermore, we show that including two ad hoc improvements to the model, namely a Newton's law of cooling on the unwetted surface of the substrate and the buoyancy of water vapour in the atmosphere, give excellent quantitative agreement for all of the combinations of liquid and substrate considered

    Magnetic phase diagram of Fe1.1Te1-xSex: A comparative study with the stoichiometric superconducting FeTe1-xSex system

    Full text link
    We report a comparative study of the series Fe1.1Te1-xSex and the stoichiometric FeTe1-xSex to bring out the difference in their magnetic, superconducting and electronic properties. The Fe1.1Te1-xSex series is found to be magnetic and its microscopic properties are elucidated through Moessbauer spectroscopy. The magnetic phase diagram of Fe1.1Te1-xSex is traced out and it shows the emergence of spin-glass state when the antiferromagnetic state is destabilized by the Se substitution. The isomer shift and quadrupolar splitting obtained from the Moessbauer spectroscopy clearly brings out the electronic differences in these two series.Comment: 6 pages, 9 figure
    • …
    corecore