57,317 research outputs found

    Ehrenfest Dynamics and Frictionless Cooling Methods

    Full text link
    Recently introduced methods which result in shortcuts to adiabaticity, particularly in the context of frictionless cooling, are rederived and discussed in the framework of an approach based on Ehrenfest dynamics. This construction provides physical insights into the emergence of the Ermakov equation, the choice of its boundary conditions, and the use of minimum uncertainty states as indicators of the efficiency of the procedure. Additionally, it facilitates the extension of frictionless cooling to more general situations of physical relevance, such as optical dipole trapping schemes. In this context, we discuss frictionless cooling in the short-time limit, a complementary case to the one considered in the literature, making explicit the limitations intrinsic to the technique when the full three-dimensional case is analyzed.Comment: 9 pages, 4 figures, v2: To appear in Physical Review A. (some minor typos corrected and some references added

    Squeezing and robustness of frictionless cooling strategies

    Full text link
    Quantum control strategies that provide shortcuts to adiabaticity are increasingly considered in various contexts including atomic cooling. Recent studies have emphasized practical issues in order to reduce the gap between the idealized models and actual ongoing implementations. We rephrase here the cooling features in terms of a peculiar squeezing effect, and use it to parametrize the robustness of frictionless cooling techniques with respect to noise-induced deviations from the ideal time-dependent trajectory for the trapping frequency. We finally discuss qualitative issues for the experimental implementation of this scheme using bichromatic optical traps and lattices, which seem especially suitable for cooling Fermi-Bose mixtures and for investigating equilibration of negative temperature states, respectively.Comment: 9 pages, 7 figures; To appear in Physical Review

    The Environmental Contribution to Wayfinding in Museums: Enhancement and Usage by Controlling Flows and Paths

    Get PDF
    The field of research in which wayfinding is situated refers to the way people move in reaction to environmental stimulation. It therefore fully concerns not just signage but also space designing, its geometric configuration, technical solutions and their material characterization. The focus is consequently on environmental factors that facilitate wayfinding in a museum (accessibility, visibility, etc.) and on other elements such as spatial configuration, architectural features and functional aspects. These factors influence relational phenomena and therefore visitors’ satisfaction. Methods and tools for designing and managing spaces have been studied in the research. The configurational analysis method of space has been used to objectify syntactic features of space. In particular, the outcomes of an experimental project, which have been analyzed in a master’s thesis on the re-functionalization of the museum of Palazzo dei Diamanti in Ferrara, are presented. Permeability, proximity, connections of spaces, namely meaningful features to ensure wayfinding have been examined. Space parameters resulting from the geometry of the layout, from the visual connections and from the changes of direction were then evaluated. The outcomes have been used as inputs for designing a unitary tour route circuit, that also reconnects the museum’s second floor, and for planning three independent alternative routes for a differentiated use of the museum

    Raman spectra of GexAsySe1−x−y glasses

    Get PDF
    Various Ge–As–Se glasses spanning a mean coordination number (MCN) from 2.2 to 2.94 have been investigated using differential scanning calorimetry and Raman spectroscopy. The glass transition temperature Tg was found to increase with increasing MCN, except for those glasses located within the nanoscale phase-separated region of the phase diagram. The evolution of Raman features at wavenumbers from 150 to 350 cm⁻¹ exhibits two transitionlike features. Merging of the 225 and 250 cm⁻¹ modes at MCN=2.5 is a symbol of the extinction of Se–Se bonds. Additionally, the appearance of two modes at 280–290 and 170 cm⁻¹ at MCN>2.7 come from the defect modes of ethanelike Ge₂Se₆/₂. The increase in the scattering from these defects is an important factor leading to enhanced optical loss in the glasses with high MCN.This research was partly supported by the Australian Research Council through its Centres of Excellence and Federation Fellow Programs

    First axion dark matter search with toroidal geometry

    Get PDF
    We firstly report an axion haloscope search with toroidal geometry. In this pioneering search, we exclude the axion-photon coupling gaγγg_{a\gamma\gamma} down to about 5×1085\times10^{-8} GeV1^{-1} over the axion mass range from 24.7 to 29.1 μ\mueV at a 95\% confidence level. The prospects for axion dark matter searches with larger scale toroidal geometry are also considered.Comment: 5 pages, 5 figures, 1 table and to appear in PRD-R

    Imprinting a complete information about a quantum channel on its output state

    Get PDF
    We introduce a novel property of bipartite quantum states, which we call "faithfulness", and we say that a state is faithful when acting with a channel on one of the two quantum systems, the output state carries a complete information about the channel. The concept of faithfulness can also be extended to sets of states, when the output states patched together carry a complete imprinting of the channel.Comment: revtex4, 4 pages, submitted to PR

    Construction of equilibrium networks with an energy function

    Full text link
    We construct equilibrium networks by introducing an energy function depending on the degree of each node as well as the product of neighboring degrees. With this topological energy function, networks constitute a canonical ensemble, which follows the Boltzmann distribution for given temperature. It is observed that the system undergoes a topological phase transition from a random network to a star or a fully-connected network as the temperature is lowered. Both mean-field analysis and numerical simulations reveal strong first-order phase transitions at temperatures which decrease logarithmically with the system size. Quantitative discrepancies of the simulation results from the mean-field prediction are discussed in view of the strong first-order nature.Comment: To appear in J. Phys.
    corecore