2 research outputs found

    Caspase I-related protease inhibition retards the execution of okadaic acid- and camptothecin-induced apoptosis and PAI-2 cleavage, but not commitment to cell death in HL-60 cells

    Get PDF
    We have previously reported that the putative cytoprotective protease inhibitor, plasminogen activator inhibitor type 2 (PAI-2), is specifically cleaved during okadaic acid-induced apoptosis in a myeloid leukaemic cell line (Br J Cancer (1994) 70: 834–840). HL-60 cells exposed to okadaic acid and camptothecin underwent morphological and biochemical changes typical of apoptosis, including internucleosomal DNA fragmentation and PAI-2 cleavage. Significant endogenous PAI-2 cleavage was observed 9 h after exposure to okadaic acid; thus correlating with other signs of macromolecular degradation, like internucleosomal DNA fragmentation. In camptothecin-treated cells, PAI-2 cleavage was an early event, detectable after 2 h of treatment, and preceding internucleosomal DNA fragmentation. The caspase I selective protease inhibitor, YVAD-cmk, inhibited internucleosomal DNA fragmentation and PAI-2 cleavage of okadaic acid and camptothecin-induced apoptotic cells. YVAD-cmk rather sensitively and non-toxically inhibited camptothecin-induced morphology, but not okadaic acid-induced morphology. In in vitro experiments recombinant PAI-2 was not found to be a substrate for caspase I. The results suggest that caspase I selective protease inhibition could antagonize parameters coupled to the execution phase of okadaic acid- and camptothecin-induced apoptosis, but not the commitment to cell death. © 1999 Cancer Research Campaig

    Mitochondria: Structure, Function and Relationship with Carcinogenesis

    No full text
    corecore