8,432 research outputs found

    Vibrations of micro-eV energies in nanocrystalline microstructures

    Get PDF
    The phonon density of states of nanocrystalline bcc Fe and nanocrystalline fcc Ni3Fe were measured by inelastic neutron scattering in two different ranges of energy. As has been reported previously, the nanocrystalline materials showed enhancements in their phonon density of states at energies from 2 to 15 meV, compared to control samples composed of large crystals. The present measurements were extended to energies in the micro-eV range, and showed significant, but smaller, enhancements in the number of modes in the energy range from 5 to 18 mueV. These modes of micro-eV energies provide a long-wavelength limit that bounds the fraction of modes at milli-eV energies originating with the cooperative dynamics of the nanocrystalline microstructure

    Design and performance analysis of network code division multiplexing for wireless sensor networks

    Full text link
    © 2015 IEEE. In this paper, we investigate the performance of a wireless sensor network, in which multiple groups of source nodes communicate with their respective destination nodes with the help of a common relay network. A network code division multiplexing (NCDM) scheme is proposed to remove the inter-session interference among multiple transmission sessions at each destination. We focus on analyzing the soft processing algorithm of the NCDM scheme. Based on the analysis results, a new code design criteria for the construction of the generator matrix is proposed. Simulation results show that by following the proposed code design criteria, the bit error ratio (BER) performance gap between the scheme we studied and the serial session scheme can be managed effectively. In serial session scheme, source nodes in a number of groups communicate with their respective destinations in a time division manner

    Research Program towards Observation of Neutrino-Nucleus Coherent Scattering

    Full text link
    The article describes the research program pursued by the TEXONO Collaboration towards an experiment to observe coherent scattering between neutrinos and the nucleus at the power reactor. The motivations of studying this process are surveyed. In particular, a threshold of 100-200 eV has been achieved with an ultra-low-energy germanium detector prototype. This detection capability at low energy can also be adapted to conduct searches of Cold Dark Matter in the low-mass region as well as to enhance the sensitivities in the study of neutrino magnetic moments.Comment: 5 pages, 8 figures ; Proceedings of TAUP-2005 Workshop, Spain, 2005. Updated on 2006/9/15 for Proceedings of Neutrino-2006 Conference, Santa Fe, 200

    Mathematical simulation for effects of flow control devices in two-strand slab tundish

    Get PDF
    Fluid flows in a two-strand tundish for slab continuous casting were performed with mathematical simulation methods. The molten steel flow velocity fields in the tundish with a turbulence inhibitor, dam, and weir were numerically calculated. Simulation results showed that the tundish with a turbulence inhibitor with no opened holes has similar flow characteristics to the tundish with dam and weir. These results are essential to optimizing the turbulence inhi bitor, dam and weir parameters for slab continuous casting tundish

    An enhanced convolutional neural network model for answer selection

    Full text link
    © 2017 International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC BY 4.0 License. Answer selection is an important task in question answering (QA) from the Web. To address the intrinsic difficulty in encoding sentences with semantic meanings, we introduce a general framework, i.e., Lexical Semantic Feature based Skip Convolution Neural Network (LSF-SCNN), with several optimization strategies. The intuitive idea is that the granular representations with more semantic features of sentences are deliberately designed and estimated to capture the similarity between question-answer pairwise sentences. The experimental results demonstrate the effectiveness of the proposed strategies and our model outperforms the state-of-the-art ones by up to 3.5% on the metrics of MAP and MRR

    Analytic Bethe Ansatz for 1-D Hubbard model and twisted coupled XY model

    Full text link
    We found the eigenvalues of the transfer matrices for the 1-D Hubbard model and for the coupled XY model with twisted boundary condition by using the analytic Bethe Ansatz method. Under a particular condition the two models have the same Bethe Ansatz equations. We have also proved that the periodic 1-D Hubbard model is exactly equal to the coupled XY model with nontrivial twisted boundary condition at the level of hamiltonians and transfer matrices.Comment: 22 pages, latex, no figure

    Exact solution of the lattice vertex model analog of the coupled Bariev XY chains

    Full text link
    We present the algebraic Bethe Ansatz solution for the vertex model recently proposed by Zhou as the classical analog of the Bariev interacting XY chains. The relevant commutation rules between the creation fields contain the Hecke symmetry pointed out recently by Hikami and Murakami. The eigenvalues of the corresponding transfer matrix are explicitly given.Comment: Plain latex, 8 pag

    Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index

    Get PDF
    Topological insulators are a new class of quantum materials with metallic (edge) surface states and insulating bulk states. They demonstrate a variety of novel electronic and optical properties, which make them highly promising electronic, spintronic, and optoelectronic materials. We report on a novel conic plasmonic nanostructure that is made of bulk-insulating topological insulators and has an intrinsic core-shell formation. The insulating (dielectric) core of the nanocone displays an ultrahigh refractive index of up to 5.5 in the near-infrared frequency range. On the metallic shell, plasmonic response and strong backward light scattering were observed in the visible frequency range. Through integrating the nanocone arrays into a-Si thin film solar cells, up to 15% enhancement of light absorption was predicted in the ultraviolet and visible ranges. With these unique features, the intrinsically core-shell plasmonic nanostructure paves a new way for designing low-loss and high-performance visible to infrared optical devices

    The B→Xsl+l−B\to X_sl^+l^- and B→XsγB\to X_s \gamma decays with the fourth generation

    Full text link
    If the fourth generation fermions exist, the new quarks could influence the branching ratios of the decays of B→XsγB\to X_s \gamma and B→Xsl+l−B\to X_sl^+l^-. We obtain two solutions of the fourth generation CKM factor Vt′s∗Vt′bV^{*}_{t^{'}s}V_{t^{'}b} from the decay of B→XsγB\to X_s \gamma. We use these two solutions to calculate the new contributions of the fourth generation quark to Wilson coefficients of the decay of B→Xsl+l−B\to X_sl^+l^-. The branching ratio and the forward-backward asymmetry of the decay of B→Xsl+l−B\to X_sl^+l^- in the two cases are calculated. Our results are quite different from that of SM in one case, almost same in another case. If Nature chooses the formmer, the BB meson decays could provide a possible test of the forth generation existence.Comment: 10 pages, 5 figure
    • …
    corecore