28 research outputs found

    Directional features of the downshifted peak observed in HF-induced stimulated electromagnetic emission spectra obtained using an interferometer

    Get PDF
    A high frequency (HF) ionospheric modification experiment was carried out between 25 September and 8 October 2004, using the EISCAT HF transmitter located near Tromsø, Norway. During this experiment the spectra of the stimulated HF sideband waves (stimulated electromagnetic emission or SEE) induced by the HF pump were observed using an interferometer consisting of three spaced receiving antennas with baselines both along and perpendicular to the meridian, and a multi-channel coherent receiver, installed in the vicinity of the HF facility. The transmitter operated at 4040kHz and its antenna beam was scanned to angles of 0°, 7°, 14°, and 21° south from vertical, pausing 4min at each position. This paper focuses on features of the downshifted peak (DP) emission, which has not been as thoroughly studied as many of the other SEE spectral features observable within the EISCAT pump frequency range. It was found that the signal-weighted direction of the DP source region remained within 5° of magnetic zenith as the HF beam was tilted between 0 and 21° south of vertical

    Interpretation of ionospheric F-region structures in the vicinity of ionisation troughs observed by satellite radio tomography

    No full text
    Tomographic images of the spatial distribution of electron density in the ionospheric F-region are presented from the Russian-American Tomography Experiment (RATE) in November 1993 as well as from campaigns carried out in northern Scandinavia in November 1995 and in Russia in April 1990. The reconstructions selected display the ionisation troughs above the tomographic chains of receivers during geomagnetically quiet and disturbed periods. Two mathematical models of the high-latitude ionosphere developed in the Polar Geophysical Institute have been applied for interpretation of the observed tomographic images.Key words. Ionosphere (electric fields and currents; ion chemistry and composition; plasma convection

    Features of stable diffuse arcs observed by means of auroral tomography

    No full text
    In this paper we study the spatial distribution of optical volume emission rates and peculiarities of the luminosity intensity within weak diffuse auroral arcs recovered by means of auroral tomography. The tomographic images are obtained from sets of scanning multi-channel photometer data obtained in February 1999 on the Kola Peninsula in Russia at three sites of a chain extending 226 km along the geomagnetic meridian. The 427.8- and 557.7-nm emissions of a 15-s time resolution observed within one hour during low geomagnetic activity are analyzed. We found that the intensity profile of an individual arc along the geomagnetic meridian has an inverted-V-shape. The luminosity maximum altitude decrease by 4–14 km at about 140 km distance in the south-north direction can be observed during two or more diffuse arcs. The parameters of the precipitating electron flux are obtained from an integral equation, which determines the best relationship between the 427.8-nm intensity height profile and an arbitrary particle energy spectrum. A dimensionless function of the energy dissipation is used as the core in the integral equation. The estimated average energy of electron flux, which generated the isolated diffuse arc, is 1–2 keV higher in the central part of the arc in comparison to values at its borders

    Anisotropy of ionospheric irregularities determined from the amplitude of satellite signals at a single receiver

    No full text
    Abstract. A new method of determining the anisotropy parameters of small-scale irregularities in the ionospheric F region is presented and experimental results are shown. The method is based on observations of amplitude ¯uctuations of radio waves transmitted by satellites ¯ying above the F region. In practice, Russian navigational satellites are used and both the amplitude and the phase of the received signal is measured on the ground level. The method determines both the ®eld-aligned anisotropy and the ®eld-perpendicular anisotropy and orientation of the spatial spectrum of the irregularities, assuming that the contours of constant power have an elliptic shape. A possibility of applying the method to amplitude tomography is also discussed. Using a chain of receivers on the ground level, one could locate the regions of small-scale irregularities as well as determine their relative intensities. Then the large-scale background structures could be mapped simultaneously by means of ordinary ray tomography using the phase observations, and therefore the relations of small-scale and large-scale structures could be investigated. Key words. Ionosphere (auroral ionosphere; ionospheric irregularities; instruments and techniques)
    corecore