448 research outputs found
Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture
Crack propagation is studied numerically using a continuum phase-field
approach to mode III brittle fracture. The results shed light on the physics
that controls the speed of accelerating cracks and the characteristic branching
instability at a fraction of the wave speed.Comment: 11 pages, 4 figure
Reconstruction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipoles
We suggest a new method for characterising non-uniform density distributions of plasma by measuring the spectra of radiation emitted from a localised plasma dipole oscillator excited by colliding electromagnetic pulses. The density distribution can be determined by scanning the collision point in space. Two-dimensional particle-in-cell simulations demonstrate the reconstruction of linear and nonlinear density profiles corresponding to laser-produced plasma. The method can be applied to a wide range of plasma, including fusion and low temperature plasmas. It overcomes many of the disadvantages of existing methods that only yield average densities along the path of probe pulses, such as interferometry and spectroscopy
Experimental analysis of lateral impact on planar brittle material
The fragmentation of alumina and glass plates due to lateral impact is
studied. A few hundred plates have been fragmented at different impact
velocities and the produced fragments are analyzed. The method employed in this
work allows one to investigate some geometrical properties of the fragments,
besides the traditional size distribution usually studied in former
experiments. We found that, although both materials exhibit qualitative similar
fragment size distribution function, their geometrical properties appear to be
quite different. A schematic model for two-dimensional fragmentation is also
presented and its predictions are compared to our experimental results. The
comparison suggests that the analysis of the fragments' geometrical properties
constitutes a more stringent test of the theoretical models' assumptions than
the size distribution
Propagating mode-I fracture in amorphous materials using the continuous random network (CRN) model
We study propagating mode-I fracture in two dimensional amorphous materials
using atomistic simulations. We used the continuous random network (CRN) model
of an amorphous material, creating samples using a two dimensional analogue of
the WWW (Wooten, Winer & Weaire) Monte-Carlo algorithm. For modeling fracture,
molecular-dynamics simulations were run on the resulting samples. The results
of our simulations reproduce the main experimental features. In addition to
achieving a steady-state crack under a constant driving displacement (which had
not yet been achieved by other atomistic models for amorphous materials), the
runs show micro-branching, which increases with driving, transitioning to
macro-branching for the largest drivings. Beside the qualitative visual
similarity of the simulated cracks to experiment, the simulation also succeeds
in explaining the experimentally observed oscillations of the crack velocity
Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency
A minimal model is constructed for two-dimensional fracture propagation. The
heterogeneous process zone is presumed to suppress stress relaxation rate,
leading to non-quasistatic behavior. Using the Yoffe solution, I construct and
solve a dynamical equation for the tip stress. I discuss a generic tip velocity
response to local stress and find that noise-free propagation is either at
steady state or oscillatory, depending only on one material parameter. Noise
gives rise to intermittency and quasi-periodicity. The theory explains the
velocity oscillations and the complicated behavior seen in polymeric and
amorphous brittle materials. I suggest experimental verifications and new
connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3
postscript figures upon request from author at [email protected] or
[email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm
Raman backscattering saturation due to coupling between ωp and 2ωp modes in plasma
Raman backscattering (RBS) in plasma is the basis of plasma-based amplifiers and is important in laser-driven fusion experiments. We show that saturation can arise from nonlinearities due to coupling between the fundamental and harmonic plasma wave modes for sufficiently intense pump and seed pulses. We present a time-dependent analysis that shows that plasma wave phase shifts reach a maximum close to wavebreaking. The study contributes to a new understanding of RBS saturation for counter-propagating laser pulses
Some theoretical results on semiconductor spherical quantum dots
We use an improved version of the standard effective mass approximation model
to describe quantum effects in nanometric semiconductor Quantum Dots (QDs).
This allows analytic computation of relevant quantities to a very large extent.
We obtain, as a function of the QD radius, in precise domains of validity, the
QD excitonic ground state energy and its Stark and Lamb shifts. Finally, the
Purcell effect in QDs is shown to lead to potential QD-LASER emitting in the
range of visible light
Oscillating Fracture in Rubber
We have found an oscillating instability of fast-running cracks in thin
rubber sheets. A well-defined transition from straight to oscillating cracks
occurs as the amount of biaxial strain increases. Measurements of the amplitude
and wavelength of the oscillation near the onset of this instability indicate
that the instability is a Hopf bifurcation
Particle-in-cell simulation of plasma-based amplification using a moving window
Current high-power laser amplifiers use chirped-pulse amplification to prevent damage to their solid-state components caused by intense electromagnetic fields. To increase laser power further requires ever larger and more expensive devices. The Raman backscatter instability in plasma facilitates an alternative amplification strategy without the limitations imposed by material damage thresholds. Plasma-based amplification has been experimentally demonstrated, but only with relatively low efficiency. Further progress requires extensive use of numerical simulations, which usually need significant computational resources. Here we present particle-in-cell (PIC) simulation techniques for accurately simulating Raman amplification using a moving window with suitable boundary conditions, reducing computational cost. We show that an analytical model for matched pump propagation in a parabolic plasma channel slightly overestimates amplification as pump laser intensity is increased. However, a method for loading data saved from separate pump-only simulations demonstrates excellent agreement with full PIC simulation. The reduction in required resources will enable parameter scans to be performed to optimize amplification, and stimulate efforts toward developing viable plasma-based laser amplifiers. The methods may also be extended to investigate Brillouin scattering, and for the development of laser wakefield accelerators. Efficient, compact, low-cost amplifiers would have widespread applications in academia and industry
- …