18 research outputs found

    Quantum and frustration effects on fluctuations of the inverse compressibility in two-dimensional Coulomb glasses

    Full text link
    We consider interacting electrons in a two-dimensional quantum Coulomb glass and investigate by means of the Hartree-Fock approximation the combined effects of the electron-electron interaction and the transverse magnetic field on fluctuations of the inverse compressibility. Preceding systematic study of the system in the absence of the magnetic field identifies the source of the fluctuations, interplay of disorder and interaction, and effects of hopping. Revealed in sufficiently clean samples with strong interactions is an unusual right-biased distribution of the inverse compressibility, which is neither of the Gaussian nor of the Wigner-Dyson type. While in most cases weak magnetic fields tend to suppress fluctuations, in relatively clean samples with weak interactions fluctuations are found to grow with the magnetic field. This is attributed to the localization properties of the electron states, which may be measured by the participation ratio and the inverse participation number. It is also observed that at the frustration where the Fermi level is degenerate, localization or modulation of electrons is enhanced, raising fluctuations. Strong frustration in general suppresses effects of the interaction on the inverse compressibility and on the configuration of electrons.Comment: 15 pages, 18 figures, To appear in Phys. Rev.

    Mesoscopic fluctuations of the ground state spin of a small metal particle

    Full text link
    We study the statistical distribution of the ground state spin for an ensemble of small metallic grains, using a random-matrix toy model. Using the Hartree Fock approximation, we find that already for interaction strengths well below the Stoner criterion there is an appreciable probability that the ground state has a finite, nonzero spin. Possible relations to experiments are discussed.Comment: 4 pages, RevTeX; 1 figure included with eps

    Coulomb blockade conductance peak fluctuations in quantum dots and the independent particle model

    Full text link
    We study the combined effect of finite temperature, underlying classical dynamics, and deformations on the statistical properties of Coulomb blockade conductance peaks in quantum dots. These effects are considered in the context of the single-particle plus constant-interaction theory of the Coulomb blockade. We present numerical studies of two chaotic models, representative of different mean-field potentials: a parametric random Hamiltonian and the smooth stadium. In addition, we study conductance fluctuations for different integrable confining potentials. For temperatures smaller than the mean level spacing, our results indicate that the peak height distribution is nearly always in good agreement with the available experimental data, irrespective of the confining potential (integrable or chaotic). We find that the peak bunching effect seen in the experiments is reproduced in the theoretical models under certain special conditions. Although the independent particle model fails, in general, to explain quantitatively the short-range part of the peak height correlations observed experimentally, we argue that it allows for an understanding of the long-range part.Comment: RevTex 3.1, 34 pages (including 13 EPS and PS figures), submitted to Phys. Rev.

    Local asymptotic normality for stationary sequences of observations

    No full text
    corecore