4 research outputs found

    A convenient criterion under which Z_2-graded operators are Hamiltonian

    Get PDF
    We formulate a simple and convenient criterion under which skew-adjoint Z_2-graded total differential operators are Hamiltonian, provided that their images are closed under commutation in the Lie algebras of evolutionary vector fields on the infinite jet spaces for vector bundles over smooth manifolds.Comment: J.Phys.Conf.Ser.: Mathematical and Physical Aspects of Symmetry. Proc. 28th Int. colloq. on group-theoretical methods in Physics (July 26-30, 2010; Newcastle-upon-Tyne, UK), 6 pages (in press

    The graded Jacobi algebras and (co)homology

    Full text link
    Jacobi algebroids (i.e. `Jacobi versions' of Lie algebroids) are studied in the context of graded Jacobi brackets on graded commutative algebras. This unifies varios concepts of graded Lie structures in geometry and physics. A method of describing such structures by classical Lie algebroids via certain gauging (in the spirit of E.Witten's gauging of exterior derivative) is developed. One constructs a corresponding Cartan differential calculus (graded commutative one) in a natural manner. This, in turn, gives canonical generating operators for triangular Jacobi algebroids. One gets, in particular, the Lichnerowicz-Jacobi homology operators associated with classical Jacobi structures. Courant-Jacobi brackets are obtained in a similar way and use to define an abstract notion of a Courant-Jacobi algebroid and Dirac-Jacobi structure. All this offers a new flavour in understanding the Batalin-Vilkovisky formalism.Comment: 20 pages, a few typos corrected; final version to be published in J. Phys. A: Math. Ge

    Why nonlocal recursion operators produce local symmetries: new results and applications

    Full text link
    It is well known that integrable hierarchies in (1+1) dimensions are local while the recursion operators that generate them usually contain nonlocal terms. We resolve this apparent discrepancy by providing simple and universal sufficient conditions for a (nonlocal) recursion operator in (1+1) dimensions to generate a hierarchy of local symmetries. These conditions are satisfied by virtually all known today recursion operators and are much easier to verify than those found in earlier work. We also give explicit formulas for the nonlocal parts of higher recursion operators, Poisson and symplectic structures of integrable systems in (1+1) dimensions. Using these two results we prove, under some natural assumptions, the Maltsev--Novikov conjecture stating that higher Hamiltonian, symplectic and recursion operators of integrable systems in (1+1) dimensions are weakly nonlocal, i.e., the coefficients of these operators are local and these operators contain at most one integration operator in each term.Comment: 10 pages, LaTeX 2e, final versio
    corecore