23,607 research outputs found
Work Function of Single-wall Silicon Carbide Nanotube
Using first-principles calculations, we study the work function of single
wall silicon carbide nanotube (SiCNT). The work function is found to be highly
dependent on the tube chirality and diameter. It increases with decreasing the
tube diameter. The work function of zigzag SiCNT is always larger than that of
armchair SiCNT. We reveal that the difference between the work function of
zigzag and armchair SiCNT comes from their different intrinsic electronic
structures, for which the singly degenerate energy band above the Fermi level
of zigzag SiCNT is specifically responsible. Our finding offers potential
usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure
Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation
In order to increase the accelerating gradient of Superconducting Radio
Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of
its high transition temperature and potential for low surface resistance in the
high RF field regime. However, due to the presence of the small superconducting
gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite
large compared to a single gap s-wave superconductor (SC) such as Nb.
Understanding the mechanisms of nonlinearity coming from the two-band structure
of MgB2, as well as extrinsic sources, is an urgent requirement. A localized
and strong RF magnetic field, created by a magnetic write head, is integrated
into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2
films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor
deposition technique on dielectric substrates, are measured at a fixed location
and show a strongly temperature-dependent third harmonic response. We propose
that at least two mechanisms are responsible for this nonlinear response, one
of which involves vortex nucleation and penetration into the film. [1] T. M.
Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field
Microwave Microscope for RF Defect Localization in Superconductors", IEEE
Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure
Equation of state of a superfluid Fermi gas in the BCS-BEC crossover
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover,
including pairing fluctuation contributions to the free energy similar to that
considered by Nozieres and Schmitt-Rink for the normal phase. In the strong
coupling limit, our theory is able to recover the Bogoliubov theory of a weakly
interacting Bose gas with a molecular scattering length very close to the known
exact result. We compare our results with recent Quantum Monte Carlo
simulations both for the ground state and at finite temperature. Excellent
agreement is found for all interaction strengths where simulation results are
available.Comment: 7 pages, 4 figures, published version in Europhysics Letters, a long
preprint with details will appear soo
Carrier and polarization dynamics in monolayer MoS2
In monolayer MoS2 optical transitions across the direct bandgap are governed
by chiral selection rules, allowing optical valley initialization. In time
resolved photoluminescence (PL) experiments we find that both the polarization
and emission dynamics do not change from 4K to 300K within our time resolution.
We measure a high polarization and show that under pulsed excitation the
emission polarization significantly decreases with increasing laser power. We
find a fast exciton emission decay time on the order of 4ps. The absence of a
clear PL polarization decay within our time resolution suggests that the
initially injected polarization dominates the steady state PL polarization. The
observed decrease of the initial polarization with increasing pump photon
energy hints at a possible ultrafast intervalley relaxation beyond the
experimental ps time resolution. By compensating the temperature induced change
in bandgap energy with the excitation laser energy an emission polarization of
40% is recovered at 300K, close to the maximum emission polarization for this
sample at 4K.Comment: 7 pages, 7 figures including supplementary materia
Local Volatility Calibration by Optimal Transport
The calibration of volatility models from observable option prices is a
fundamental problem in quantitative finance. The most common approach among
industry practitioners is based on the celebrated Dupire's formula [6], which
requires the knowledge of vanilla option prices for a continuum of strikes and
maturities that can only be obtained via some form of price interpolation. In
this paper, we propose a new local volatility calibration technique using the
theory of optimal transport. We formulate a time continuous martingale optimal
transport problem, which seeks a martingale diffusion process that matches the
known densities of an asset price at two different dates, while minimizing a
chosen cost function. Inspired by the seminal work of Benamou and Brenier [1],
we formulate the problem as a convex optimization problem, derive its dual
formulation, and solve it numerically via an augmented Lagrangian method and
the alternative direction method of multipliers (ADMM) algorithm. The solution
effectively reconstructs the dynamic of the asset price between the two dates
by recovering the optimal local volatility function, without requiring any time
interpolation of the option prices
Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields
We have studied an anomalous microwave (mw) response of superconducting
YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak
dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s})
show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and
X_{s} were found to initially decrease with elevated H_{dc} and then increase
after H_{dc} reaches a crossover field, H_{c}, which is independent of the
amplitude and frequency of the input mw signal within the measurements. The
frequency dependence of R_{s} is almost linear at fixed H_{dc} with different
magnitudes (H_{c}). The impedance plane analysis
demonstrates that r_{H}, which is defined as the ratio of the change in
R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1
at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is
qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
- …