732 research outputs found

    Cenozoic evolution of Neotethys and implications for the causes of plate motions

    Get PDF
    Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations and new estimates of crustal shortening in Iran define the Cenozoic history of the Neotethyan ocean between Arabia and Eurasia. The new constraints indicate that Arabia-Eurasia convergence has been fairly constant at 2 to 3 cm/yr since 56 Ma with slowing of Africa-Eurasia motion to <1 cm/yr near 25 Ma, coeval with the opening of the Red Sea. Ocean closure occurred no later than 10 Ma, and could have occurred prior to this time only if a large amount of continental lithosphere was subducted, suggesting that slowing of Africa significantly predated the Arabia-Eurasia collision. These kinematics imply that Africa's disconnection with the negative buoyancy of the downgoing slab of lithosphere beneath southern Eurasia slowed its motion. The slow, steady rate of northward subduction since 56 Ma contrasts with strongly variable rates of magma production in the Urumieh-Dokhtar arc, implying magma production rate in continental arcs is not linked to subduction rate

    Geologic map of the east-central Meadow Valley Mountains, and implications for reconstruction of the Mormon Peak detachment, Nevada

    Get PDF
    The role of low-angle faults in accommodating extension within the upper crust remains controversial because the existence of these faults markedly defies extant continuum theories of how crustal faults form, and once initiated, how they continue to slip. Accordingly, for many proposed examples, basic kinematic problems like slip direction, dip angle while active, and magnitude of offset are keenly debated. A well-known example is the Miocene Mormon Peak detachment and overlying Mormon Peak allochthon of southern Nevada (USA), whose origin and evolution have been debated for several decades. Here, we use geologic mapping in the Meadow Valley Mountains to help define the geometry and kinematics of emplacement of the Mormon Peak allochthon, the hanging wall of the Mormon Peak detachment. Pre-exten­sion structural markers, inherited from the east-vergent Sevier thrust belt of Meso­zoic age, are well suited to constrain the geometry and kine­matics of the detachment. In this study, we add to these markers a newly mapped Sevier-­age monoclinal flexure preserved in the hanging wall of the detachment. The bounding axial surfaces of the flexure can be readily matched to the base and top of the frontal Sevier thrust ramp, which is exposed in the footwall of the detachment to the east in the Mormon Mountains and Tule Springs Hills. Multiple proxies for the slip direction of the detachment, including the mean tilt direction of hanging wall fault blocks, the trend of striations measured on the fault plane, and other structural features, indicate that it is approximately S77°W (257°). Given the observed structural separation lines between the hanging wall and footwall, this slip direction indicates 12–13 km of horizontal displacement on the detachment (14–15 km net slip), lower than a previous estimate of 20–22 km, which was based on erroneous assumptions in regard to the geometry of the thrust system. Based on a new detailed map compilation of the region and recently published low-temperature thermochronologic data, palinspastic constraints also preclude earlier suggestions that the Mormon Peak allochthon is a composite of diachronously emplaced, surficial landslide deposits. Although earlier suggestions that the initiation angle of the detachment in the central Mormon Mountains is ∌ 20°–25° remain valid, the geometry of the Sevier-age monocline in the Meadow Valley Mountains and other structural data suggest that the initial dip of the detachment steepens toward the north beneath the southernmost Clover Mountains, where the hanging wall includes kilometer-scale accumulations of volcanic and volcaniclastic strata

    Assessment of GPS velocity accuracy for the Basin and Range Geodetic Network (BARGEN)

    Get PDF
    We assess the accuracy of horizontal velocity estimates from the Basin and Range Geodetic Network (BARGEN), a continuous GPS network that has been in operation since 1996. To make this quantitative assessment, we use a procedure that we term the “whole-error” method. In this method, the measure of the velocity errors is the root-mean-square (RMS) residual velocity relative to a simple geophysical model. This method produces a conservative estimate of the uncertainties, since errors in the geophysical models also contribute to the RMS residual. Using estimates from two different BARGEN subnetworks, the Northern Basin and Range and the Yucca Mountain Cluster, we determine velocity uncertainties of 0.1–0.2 mm yr^(−1). Since BARGEN covers a significant fraction of area of the proposed Plate Boundary Observatory component of EarthScope, our results indicate a good ability of this project to determine highly accurate long-term horizontal crustal velocities and deformation rates in this region

    Fluid Flow, Brecciation, and Shear Heating on Faults: Insights from Carbonate Clumped-Isotope Thermometry

    Get PDF
    Slip on gently dipping detachments in the brittle crust has been enigmatic for decades, because fracture mechanics laws predict frictional resistance is too great for sliding to occur, except under rather unusual circumstances. The Miocene Mormon Peak detachment in Nevada and the Eocene Heart Mountain detachment in Wyoming are two well‐studied examples of upper crustal, carbonate‐hosted low‐angle detachments, with highly debated slip processes. Both low‐angle faults were active during regional magmatism, and a number of proposed slip mechanisms involve magmatic fluids, frictional heating, or both. To address the role that magmatic fluids and frictional heating may have played in reducing friction, we measured clumped‐isotope ratios on 137 carbonate samples from these faults. The majority of fault breccias and gouges on the detachment slip surface record temperatures that are colder than the host rock. Surprisingly, samples from within 5 m of the Heart Mountain detachment average just 65 °C, and not a single sample (out of 37 measurements, excluding metamorphosed host rock at White Mountain) records a temperature greater than 90 °C. Along both faults, most samples are depleted in ή^(18)O relative to the host rock, indicating that meteoric, not magmatic, fluids were present and interacting with the fault rock. However, a few samples preserve temperatures of over 160 °C, which, based on textural and geochemical criteria, are difficult to explain other than by frictional heating during slip. These temperatures are recorded in one sample directly on the Mormon Peak detachment slip surface and in two hanging wall localities above the Heart Mountain detachment

    Th–U–total Pb geochronology of authigenic monazite in the Adelaide rift complex, South Australia, and implications for the age of the type Sturtian and Marinoan glacial deposits

    Get PDF
    The Adelaide rift complex in South Australia contains the type sections for Sturtian and Marinoan glacial deposits. The litho- and chemo-stratigraphy of these deposits play a central role in evaluating global Neoproterozoic ice age hypotheses and Rodinia supercontinent reconstructions, but reliable depositional age constraints have been extremely limited. We report results of in situ Th–U–total Pb (electron microprobe) dating of detrital and authigenic monazite in two samples from the Umberatana Group (Sturtian Holowilena Ironstone and pre-Marinoan Enorama Shale) in the Central Flinders Ranges. Several texturally and chemically distinct detrital and authigenic populations are recognized. Detrital dates range from 1600 Ma to 760 Ma and most relate to well-known orogenic or igneous events in surrounding cratonic regions. Authigenic monazite grew in three or more pulses ranging from 680 Ma to 500 Ma. The date of 680 ± 23 Ma (2σ) for the earliest generation of authigenic monazite in sandstone from the Enorama Shale (1) provides an estimate for the age of the base of the Trezona carbon isotopic anomaly just beneath the Marinoan glacial deposits, (2) provides an absolute minimum age constraint on the underlying Sturtian glacial deposits, and (3) supports proposed correlations between type Marinoan deposits and precisely dated glacial deposits in Namibia and China, which bracket the presumed Marinoan equivalents between 655 and 635 Ma. This age is inconsistent with a Re–Os isochron age of 643 ± 2.4 Ma (2σ) on shales near the bottom of the Sturtian–Marinoan interglacial succession, stratigraphically > 3000 m below the Enorama Shale sample, and militate against the hypothesis that the type Marinoan is correlative with the 580 Ma Gaskiers glaciation. Monazite growth near 600 Ma and again at about 500 Ma probably represent hydrothermal fluid-flow events, the latter of which also corresponds to the well-known Delamerian Orogeny during which the Adelaide sediments were folded into their present structural pattern

    Evidence for the Role of Mindfulness in Cancer: Benefits and Techniques.

    Get PDF
    Mindfulness is being used increasingly in various aspects of cancer management. Benefits of mindfulness practices are being observed to manage the adverse effects of treatment, symptoms from cancer progression, and the cost-effectiveness compared to conventional contemporary management strategies. In this review article, we present clinical trial data showing the benefits of mindfulness in various aspects of cancer management as well as techniques that have been commonly used in this practice

    Thermochronometry across the Austroalpine-Pennine boundary, Central Alps, Switzerland: Orogen-perpendicular normal fault slip on a major ‘overthrust’ and its implications for orogenesis

    Get PDF
    Fifty-one new and 309 published thermochronometric ages (nine systems with closure temperatures ranging from ~450 to 70°C) from the GraubĂŒnden region of the Central Alps demonstrate that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports previous suggestions that the famous “overthrust” between the Austroalpine allochthon and the Pennine zone, historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear. Two hallmarks of Alpine geology, deposition of the foredeep Molasse and emplacement of the Helvetic nappes, appear to be coeval, peripheral manifestations of crustal thickening via the interposition of the Pennine zone as a northward intruding wedge between the Austroalpine “lid” and the European cratonic margin, with the Helvetic system (European margin) acting as the “floor” of the wedge. We presume the Penninic wedge is driven by the buoyant rise of subducted crust no longer able to remain attached to the descending slab. If so, emplacement of the Pennine wedge could have occurred mainly after Adria was juxtaposed against cratonic Europe

    Magnitude and Timing of Extreme Continental Extension, Central Death Valley Region, California

    Get PDF
    New geochronologic, stratigraphic, and sedimentologic data indicate extreme late Cenozoic extension across the central Death Valley region (fig. 9). ^(40)Ar/^(39)Ar geochronology of sanidine from tuffs intercalated with steeply tilted sediments along the eastern margin of the central Death Valley region, including sections near Chicago Pass and at Eagle Mountain, indicates deposition from approximately 15 to 11.7 Ma (fig. 10). Clasts of marble, orthoquartzite, fusilinid limestone, and leucogabbro are prominent at both locations. The only known source in the Death Valley region for this clast assemblage is in the southern Cotton wood Mountains, more than 100 km away on the western flank of the Death Valley region. U/Pb geochronology of baddeleyite confirms that leucogabbro clasts from both sections have the same igneous crystallization age (~180 Ma) as the leucogabbroic phase of the Hunter Mountain batholith, in the southern Cottonwood Mountains. The sediments include debris flows, flood deposits, and monolithic boulder beds of large leucogabbro clasts (>1 m), suggesting deposition in an alluvial fan setting. Sedimentary transport of these deposits is unlikely to have exceeded 20 km. Restoration of the Eagle Mountain and Chicago Valley deposits to a position just east of the southern Cotton wood Mountains results in approximate net translations of 80 km and 104 km, respectively, at an azimuth of N. 67° W. (fig. 11). This suggests overall extension magnitudes of at least 500 percent across the Death Valley region since 12 Ma, with strain rates that approached 10^(-14)/s during maximum extension. These results support previous reconstructions based on isopachs and Mesozoic structural features. (See, for example, Wernicke and others, 1988.

    Crustal loading near Great Salt Lake, Utah

    Get PDF
    Two sites of the BARGEN GPS network are located ∌30 km south of Great Salt Lake (GSL). Lake-level records since mid-1996 indicate seasonal water elevation variations of ∌0.3 m amplitude superimposed on a roughly “decadal” feature of amplitude ∌0.6 m. Using an elastic Green's function and a simplified load geometry for GSL, we calculate that these variations translate into radial crustal loading signals of ±0.5 mm (seasonal) and ±1 mm (decadal). The horizontal loading signals are a factor of ∌2 smaller. Despite the small size of the expected loading signals, we conclude that we can observe them using GPS time series for the coordinates of these two sites. The observed amplitudes of the variations agree with the predicted decadal variations to <0.5 mm. The observed annual variations, however, disagree; this difference may be caused by some combination of local precipitation-induced site motion, unmodeled loading from other nearby sources, errors in the GSL model, and atmospheric errors
    • 

    corecore