15,341 research outputs found

    Apparatus for ejection of an instrument cover

    Get PDF
    Apparatus for ejecting covers of instrument packages using differential pressure principl

    Wind-tunnel investigation of the aerodynamic pressures on the Apollo command module configuration

    Get PDF
    Wind tunnel study of aerodynamic pressures on Apollo command module configuratio

    Temporal frequency of radio emissions for the April 25, 1984 flare

    Get PDF
    The National Geophysical Data Center archives data of the solar-terrestrial environment. The USAF Radio Solar Telescope Network (RSTN) data allow performance of time series analysis to determine temporal oscillations as low as three seconds. The X13/3B flare which erupted in region 4474 (S12E43) on the 24 to 25 of April 1984, was selected. The soft X-rays, 1 to 8 A, remained above X-levels for 50 minutes and the radio emissions measured at Learmonth Solar Observatory reached a maximum of 3.15 x 10 to the 5th power SFUs at 410 MHz at 0000UT. A power spectral analysis of the fixed frequency RSTN data from Learmonth shows possible quasi-periodic fluctuations in the range two to ten seconds. Repetition rates or quasi-periodicities, in the case of the power spectral analysis, generally showed the same trends as the average solar radio flux at 245 and 8800 MHz. The quasi-periodicities at 1415 MHz showed no such trends

    Flux-Confinement in Dilatonic Cosmic Strings

    Full text link
    We study dilaton-electrodynamics in flat spacetime and exhibit a set of global cosmic string like solutions in which the magnetic flux is confined. These solutions continue to exist for a small enough dilaton mass but cease to do so above a critcal value depending on the magnetic flux. There also exist domain wall and Dirac monopole solutions. We discuss a mechanism whereby magnetic monopolesmight have been confined by dilaton cosmic strings during an epoch in the early universe during which the dilaton was massless.Comment: 8 pages, DAMTP R93/3

    Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors

    Full text link
    We demonstrate simultaneous quantisation of conduction band (CB) and valence band (VB) states in silicon using ultra-shallow, high density, phosphorus doping profiles (so-called Si:P δ\delta-layers). We show that, in addition to the well known quantisation of CB states within the dopant plane, the confinement of VB-derived states between the sub-surface P dopant layer and the Si surface gives rise to a simultaneous quantisation of VB states in this narrow region. We also show that the VB quantisation can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantised VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantised CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantised CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia

    Comparative analysis of rigidity across protein families

    Get PDF
    We present a comparative study in which 'pebble game' rigidity analysis is applied to multiple protein crystal structures, for each of six different protein families. We find that the main-chain rigidity of a protein structure at a given hydrogen bond energy cutoff is quite sensitive to small structural variations, and conclude that the hydrogen bond constraints in rigidity analysis should be chosen so as to form and test specific hypotheses about the rigidity of a particular protein. Our comparative approach highlights two different characteristic patterns ('sudden' or 'gradual') for protein rigidity loss as constraints are removed, in line with recent results on the rigidity transitions of glassy networks

    Local Structure and It's Effect on The Ferromagnetic Properties of La0.5_{0.5}Sr0.5_{0.5}CoO3_3 thin films}

    Full text link
    We have used high-resolution Extended X-ray Absorption Fine-Structure and diffraction techniques to measure the local structure of strained La0.5_{0.5}Sr0.5_{0.5}CoO3_3 films under compression and tension. The lattice mismatch strain in these compounds affects both the bond lengths and the bond angles, though the larger effect on the bandwidth is due to the bond length changes. The popular double exchange model for ferromagnetism in these compounds provides a correct qualitative description of the changes in Curie temperature TCT_C, but quantitatively underestimates the changes. A microscopic model for ferromagnetism that provides a much stronger dependence on the structural distortions is needed.Comment: 4 pages, 4 figure
    • …
    corecore