15,341 research outputs found
Apparatus for ejection of an instrument cover
Apparatus for ejecting covers of instrument packages using differential pressure principl
Wind-tunnel investigation of the aerodynamic pressures on the Apollo command module configuration
Wind tunnel study of aerodynamic pressures on Apollo command module configuratio
Temporal frequency of radio emissions for the April 25, 1984 flare
The National Geophysical Data Center archives data of the solar-terrestrial environment. The USAF Radio Solar Telescope Network (RSTN) data allow performance of time series analysis to determine temporal oscillations as low as three seconds. The X13/3B flare which erupted in region 4474 (S12E43) on the 24 to 25 of April 1984, was selected. The soft X-rays, 1 to 8 A, remained above X-levels for 50 minutes and the radio emissions measured at Learmonth Solar Observatory reached a maximum of 3.15 x 10 to the 5th power SFUs at 410 MHz at 0000UT. A power spectral analysis of the fixed frequency RSTN data from Learmonth shows possible quasi-periodic fluctuations in the range two to ten seconds. Repetition rates or quasi-periodicities, in the case of the power spectral analysis, generally showed the same trends as the average solar radio flux at 245 and 8800 MHz. The quasi-periodicities at 1415 MHz showed no such trends
Flux-Confinement in Dilatonic Cosmic Strings
We study dilaton-electrodynamics in flat spacetime and exhibit a set of
global cosmic string like solutions in which the magnetic flux is confined.
These solutions continue to exist for a small enough dilaton mass but cease to
do so above a critcal value depending on the magnetic flux. There also exist
domain wall and Dirac monopole solutions. We discuss a mechanism whereby
magnetic monopolesmight have been confined by dilaton cosmic strings during an
epoch in the early universe during which the dilaton was massless.Comment: 8 pages, DAMTP R93/3
Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors
We demonstrate simultaneous quantisation of conduction band (CB) and valence
band (VB) states in silicon using ultra-shallow, high density, phosphorus
doping profiles (so-called Si:P -layers). We show that, in addition to
the well known quantisation of CB states within the dopant plane, the
confinement of VB-derived states between the sub-surface P dopant layer and the
Si surface gives rise to a simultaneous quantisation of VB states in this
narrow region. We also show that the VB quantisation can be explained using a
simple particle-in-a-box model, and that the number and energy separation of
the quantised VB states depend on the depth of the P dopant layer beneath the
Si surface. Since the quantised CB states do not show a strong dependence on
the dopant depth (but rather on the dopant density), it is straightforward to
exhibit control over the properties of the quantised CB and VB states
independently of each other by choosing the dopant density and depth
accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia
Comparative analysis of rigidity across protein families
We present a comparative study in which 'pebble game' rigidity analysis is applied to multiple protein crystal structures, for each of six different protein families. We find that the main-chain rigidity of a protein structure at a given hydrogen bond energy cutoff is quite sensitive to small structural variations, and conclude that the hydrogen bond constraints in rigidity analysis should be chosen so as to form and test specific hypotheses about the rigidity of a particular protein. Our comparative approach highlights two different characteristic patterns ('sudden' or 'gradual') for protein rigidity loss as constraints are removed, in line with recent results on the rigidity transitions of glassy networks
Local Structure and It's Effect on The Ferromagnetic Properties of LaSrCoO thin films}
We have used high-resolution Extended X-ray Absorption Fine-Structure and
diffraction techniques to measure the local structure of strained
LaSrCoO films under compression and tension. The lattice
mismatch strain in these compounds affects both the bond lengths and the bond
angles, though the larger effect on the bandwidth is due to the bond length
changes. The popular double exchange model for ferromagnetism in these
compounds provides a correct qualitative description of the changes in Curie
temperature , but quantitatively underestimates the changes. A microscopic
model for ferromagnetism that provides a much stronger dependence on the
structural distortions is needed.Comment: 4 pages, 4 figure
- …