246 research outputs found
Ferromagnetism and Lattice Distortions in the Perovskite YTiO
The thermodynamic properties of the ferromagnetic perovskite YTiO are
investigated by thermal expansion, magnetostriction, specific heat, and
magnetization measurements. The low-temperature spin-wave contribution to the
specific heat, as well as an Arrott plot of the magnetization in the vicinity
of the Curie temperature K, are consistent with a
three-dimensional Heisenberg model of ferromagnetism. However, a magnetic
contribution to the thermal expansion persists well above , which
contrasts with typical three-dimensional Heisenberg ferromagnets, as shown by a
comparison with the corresponding model system EuS. The pressure dependences of
and of the spontaneous moment are extracted using thermodynamic
relationships. They indicate that ferromagnetism is strengthened by uniaxial
pressures and is weakened by uniaxial
pressures and hydrostatic pressure.
Our results show that the distortion along the - and -axes is further
increased by the magnetic transition, confirming that ferromagnetism is favored
by a large GdFeO-type distortion. The c-axis results however do not fit
into this simple picture, which may be explained by an additional
magnetoelastic effect, possibly related to a Jahn-Teller distortion.Comment: 12 pages, 13 figure
Superconductivity mediated by a soft phonon mode: specific heat, resistivity, thermal expansion and magnetization of YB6
The superconductor YB6 has the second highest critical temperature Tc among
the boride family MBn. We report measurements of the specific heat,
resistivity, magnetic susceptibility and thermal expansion from 2 to 300 K,
using a single crystal with Tc = 7.2 K. The superconducting gap is
characteristic of medium-strong coupling. The specific heat, resistivity and
expansivity curves are deconvolved to yield approximations of the phonon
density of states, the spectral electron-phonon scattering function and the
phonon density of states weighted by the frequency-dependent Grueneisen
parameter respectively. Lattice vibrations extend to high frequencies >100 meV,
but a dominant Einstein-like mode at ~8 meV, associated with the vibrations of
yttrium ions in oversized boron cages, appears to provide most of the
superconducting coupling and gives rise to an unusual temperature behavior of
several observable quantities. A surface critical field Hc3 is also observed.Comment: 29 pages, 5 tables, 17 figures. Accepted for publication in Phys.
Rev.
Quantum interference and electron-electron interactions at strong spin-orbit coupling in disordered systems
Transport and thermodynamic properties of disordered conductors are
considerably modified when the angle through which the electron spin precesses
due to spin-orbit interaction (SOI) during the mean free time becomes
significant. Cooperon and Diffusion equations are solved for the entire range
of strength of SOI. The implications of SOI for the electron-electron
interaction and interference effects in various experimental settings are
discussed.Comment: 4 pages, REVTEX, 1 eps.figure Submitted to Phys. Rev. Let
Charge transport and magnetization profile at the interface between a correlated metal and an antiferromagnetic insulator
A combination of spectroscopic probes was used to develop a detailed
experimental description of the transport and magnetic properties of
superlattices composed of the paramagnetic metal CaRuO and the
antiferromagnetic insulator CaMnO. The charge carrier density and Ru
valence state in the superlattices are not significantly different from those
of bulk CaRuO. The small charge transfer across the interface implied by
these observations confirms predictions derived from density functional
calculations. However, a ferromagnetic polarization due to canted Mn spins
penetrates 3-4 unit cells into CaMnO, far exceeding the corresponding
predictions. The discrepancy may indicate the formation of magnetic polarons at
the interface.Comment: 4 pages, 3 figure
Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity
The electronic specific heat of as-grown and annealed single-crystals of
FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed
single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear
specific-heat jump at the superconducting (SC) transition temperature, Tc. Both
2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS
s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump
at Tc, gamma_n: the electronic specific-heat coefficient in the normal state,
gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC
state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29
and 2.76, respectively, indicating that the superconductivity is of the strong
coupling. The thermodynamic critical field has also been estimated. gamma_n has
been found to be one order of magnitude larger than those estimated from the
band calculations and increases with increasing x at x=0.6-0.9, which is
surmised to be due to the increase in the electronic effective mass, namely,
the enhancement of the electron correlation. It has been found that there
remains a finite value of gamma_0 in the SC state even in the well-annealed
single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in
real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for
publication in J. Phys. Soc. Jp
Range of the t--J model parameters for CuO plane: experimental data constraints
The t-J model effective hopping integral is determined from the three-band
Hubbard model for the charge carriers in CuO plane. For this purpose the
values of the superexchange constant and the charge-transfer gap
are calculated in the framework of the three-band model. Fitting values of
and to the experimental data allows to narrow the uncertainty region
of the three-band model parameters. As a result, the ratio of the t-J
model is fixed in the range for holes and for
electrons. Formation of the Frenkel exciton is justified and the main features
of the charge-transfer spectrum are correctly described in the framework of
this approach.Comment: 20pp., REVTEX 3.0, (11 figures), report 66
Charge Transport in Manganites: Hopping Conduction, the Anomalous Hall Effect and Universal Scaling
The low-temperature Hall resistivity \rho_{xy} of La_{2/3}A_{1/3}MnO_3 single
crystals (where A stands for Ca, Pb and Ca, or Sr) can be separated into
Ordinary and Anomalous contributions, giving rise to Ordinary and Anomalous
Hall effects, respectively. However, no such decomposition is possible near the
Curie temperature which, in these systems, is close to metal-to-insulator
transition. Rather, for all of these compounds and to a good approximation, the
\rho_{xy} data at various temperatures and magnetic fields collapse (up to an
overall scale), on to a single function of the reduced magnetization
m=M/M_{sat}, the extremum of this function lying at m~0.4. A new mechanism for
the Anomalous Hall Effect in the inelastic hopping regime, which reproduces
these scaling curves, is identified. This mechanism, which is an extension of
Holstein's model for the Ordinary Hall effect in the hopping regime, arises
from the combined effects of the double-exchange-induced quantal phase in
triads of Mn ions and spin-orbit interactions. We identify processes that lead
to the Anomalous Hall Effect for localized carriers and, along the way, analyze
issues of quantum interference in the presence of phonon-assisted hopping. Our
results suggest that, near the ferromagnet-to-paramagnet transition, it is
appropriate to describe transport in manganites in terms of carrier hopping
between states that are localized due to combined effect of magnetic and
non-magnetic disorder. We attribute the qualitative variations in resistivity
characteristics across manganite compounds to the differing strengths of their
carrier self-trapping, and conclude that both disorder-induced localization and
self-trapping effects are important for transport.Comment: 29 pages, 20 figure
The epidemiology and transmission of methicillin-resistant Staphylococcus aureus in the community in Singapore: study protocol for a longitudinal household study.
BACKGROUND/AIM: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multidrug-resistant organisms in healthcare settings worldwide, but little is known about MRSA transmission outside of acute healthcare settings especially in Asia. We describe the methods for a prospective longitudinal study of MRSA prevalence and transmission. METHODS: MRSA-colonized individuals were identified from MRSA admission screening at two tertiary hospitals and recruited together with their household contacts. Participants submitted self-collected nasal, axilla and groin (NAG) swabs by mail for MRSA culture at baseline and monthly thereafter for 6Â months. A comparison group of households of MRSA-negative patients provided swab samples at one time point. In a validation sub-study, separate swabs from each site were collected from randomly selected individuals, to compare MRSA detection rates between swab sites, and between samples collected by participants versus those collected by trained research staff. Information on each participant's demographic information, medical status and medical history, past healthcare facilities usage and contacts, and personal interactions with others were collected using a self-administered questionnaire. DISCUSSION/CONCLUSION: Understanding the dynamics of MRSA persistence and transmission in the community is crucial to devising and evaluating successful MRSA control strategies. Close contact with MRSA colonized patients may to be important for MRSA persistence in the community; evidence from this study on the extent of community MRSA could inform the development of household- or community-based interventions to reduce MRSA colonization of close contacts and subsequent re-introduction of MRSA into healthcare settings. Analysis of longitudinal data using whole-genome sequencing will yield further information regarding MRSA transmission within households, with significant implications for MRSA infection control outside acute hospital settings
- …