8,992 research outputs found

    Near mean-field behavior in the generalized Burridge-Knopoff earthquake model with variable range stress transfer

    Full text link
    Simple models of earthquake faults are important for understanding the mechanisms for their observed behavior in nature, such as Gutenberg-Richter scaling. Because of the importance of long-range interactions in an elastic medium, we generalize the Burridge-Knopoff slider-block model to include variable range stress transfer. We find that the Burridge-Knopoff model with long-range stress transfer exhibits qualitatively different behavior than the corresponding long-range cellular automata models and the usual Burridge-Knopoff model with nearest-neighbor stress transfer, depending on how quickly the friction force weakens with increasing velocity. Extensive simulations of quasiperiodic characteristic events, mode-switching phenomena, ergodicity, and waiting-time distributions are also discussed. Our results are consistent with the existence of a mean-field critical point and have important implications for our understanding of earthquakes and other driven dissipative systems.Comment: 24 pages 12 figures, revised version for Phys. Rev.

    Quantum Hall effect in narrow graphene ribbons

    Full text link
    The edge states in the integer quantum Hall effect are known to be significantly affected by electrostatic interactions leading to the formation of compressible and incompressible strips at the boundaries of Hall bars. We show here, in a combined experimental and theoretical analysis, that this does not hold for the quantum Hall effect in narrow graphene ribbons. In our graphene Hall bar, which is only 60 nm wide, we observe the quantum Hall effect up to Landau level index k=2 and show within a zero free-parameter model that the spatial extent of the compressible and incompressible strips is of a similar magnitude as the magnetic length. We conclude that in narrow graphene ribbons the single-particle picture is a more appropriate description of the quantum Hall effect and that electrostatic effects are of minor importance.Comment: RevTex, 5 pages, 4 figures (matches published version

    Simulation of the Burridge-Knopoff Model of Earthquakes with Variable Range Stress Transfer

    Full text link
    Simple models of earthquake faults are important for understanding the mechanisms for their observed behavior, such as Gutenberg-Richter scaling and the relation between large and small events, which is the basis for various forecasting methods. Although cellular automaton models have been studied extensively in the long-range stress transfer limit, this limit has not been studied for the Burridge-Knopoff model, which includes more realistic friction forces and inertia. We find that the latter model with long-range stress transfer exhibits qualitatively different behavior than both the long-range cellular automaton models and the usual Burridge-Knopoff model with nearest neighbor springs, depending on the nature of the velocity-weakening friction force. This result has important implications for our understanding of earthquakes and other driven dissipative systems.Comment: 4 pages, 5 figures, published on Phys. Rev. Let

    Exact equqations and scaling relations for f-avalanche in the Bak-Sneppen evolution model

    Full text link
    Infinite hierarchy of exact equations are derived for the newly-observed f-avalanche in the Bak-Sneppen evolution model. By solving the first order exact equation, we found that the critical exponent which governs the divergence of the average avalanche size, is exactly 1 (for all dimensions), confirmed by the simulations. Solution of the gap equation yields another universal exponent, denoting the the relaxation to the attractor, is exactly 1. We also establish some scaling relations among the critical exponents of the new avalanche.Comment: 5 pages, 1 figur

    Simulations of Spinodal Nucleation in Systems with Elastic Interactions

    Full text link
    Systems with long-range interactions quenched into a metastable state near the pseudospinodal exhibit nucleation that is qualitatively different than the classical nucleation observed near the coexistence curve. We have observed nucleation droplets in our Langevin simulations of a two-dimensional model of martensitic transformations and have determined that the structure of the nucleating droplet differs from the stable martensite structure. Our results, together with experimental measurements of the phonon dispersion curve, allow us to predict the nature of the droplet. These results have implications for nucleation in many solid-solid transitions and the structure of the final state

    Minutes 1873

    Get PDF
    https://place.asburyseminary.edu/freemethodistminutesyearbooks/1011/thumbnail.jp
    • …
    corecore