5,881 research outputs found

    Description of isolated macroscopic systems inside quantum mechanics

    Get PDF
    For an isolated macrosystem classical state parameters ζ(t)\zeta(t) are introduced inside a quantum mechanical treatment. By a suitable mathematical representation of the actual preparation procedure in the time interval [T,t0][T,t_0] a statistical operator is constructed as a solution of the Liouville von Neumann equation, exhibiting at time tt the state parameters ζ(t)\zeta(t'), t0ttt_0\leq t' \leq t, and {\it preparation parameters} related to times Ttt0T \leq t'\leq t_0. Relation with Zubarev's non-equilibrium statistical operator is discussed. A mechanism for memory loss is investigated and time evolution by a semigroup is obtained for a restricted set of relevant observables, slowly varying on a suitable time scale.Comment: 13 pages, latex, romp31 style, no figures, to appear in the Proceedings of the XXXI Symposium on Mathematical Physics (Torun, Poland), to be published in Rep. Math. Phy

    Effective calculation of LEED intensities using symmetry-adapted functions

    Get PDF
    The calculation of LEED intensities in a spherical-wave representation can be substantially simplified by symmetry relations. The wave field around each atom is expanded in symmetry-adapted functions where the local point symmetry of the atomic site applies. For overlayer systems with more than one atom per unit cell symmetry-adapted functions can be used when the division of the crystal into monoatomic subplanes is replaced by division into subplanes containing all symmetrically equivalent atomic positions

    Modelsimulaties van het stadsklimaat van Rotterdam

    Get PDF
    Modelsimulaties zijn uitgevoerd ter inschatting van het Urban Heat Island effect van Rotterdam. Hiervoor is de meest recente versie van het Weather Research & Forecasting (WRF) model gebruikt dat is uitgerust met een Urban Canopy Model. Bovendien is gebruik gemaakt van specifieke stadeigenschappen die zeer recent beschikbaar zijn gekome

    Self-induced decoherence approach: Strong limitations on its validity in a simple spin bath model and on its general physical relevance

    Get PDF
    The "self-induced decoherence" (SID) approach suggests that (1) the expectation value of any observable becomes diagonal in the eigenstates of the total Hamiltonian for systems endowed with a continuous energy spectrum, and (2), that this process can be interpreted as decoherence. We evaluate the first claim in the context of a simple spin bath model. We find that even for large environments, corresponding to an approximately continuous energy spectrum, diagonalization of the expectation value of random observables does in general not occur. We explain this result and conjecture that SID is likely to fail also in other systems composed of discrete subsystems. Regarding the second claim, we emphasize that SID does not describe a physically meaningful decoherence process for individual measurements, but only involves destructive interference that occurs collectively within an ensemble of presupposed "values" of measurements. This leads us to question the relevance of SID for treating observed decoherence effects.Comment: 11 pages, 4 figures. Final published versio

    Decoherence time in self-induced decoherence

    Full text link
    A general method for obtaining the decoherence time in self-induced decoherence is presented. In particular, it is shown that such a time can be computed from the poles of the resolvent or of the initial conditions in the complex extension of the Hamiltonian's spectrum. Several decoherence times are estimated: 101310^{-13}- 1015s10^{-15}s for microscopic systems, and 10371039s10^{-37}-10^{-39}s for macroscopic bodies. For the particular case of a thermal bath, our results agree with those obtained by the einselection (environment-induced decoherence) approach.Comment: 11 page

    Modelling and observing urban climate in the Netherlands

    Get PDF
    Volgens de klimaatscenario’s van het KNMI uit 2006 zal de gemiddelde temperatuur in Nederland in de komende decennia verder stijgen. Hittegolven zullen naar verwachting vaker voorkomen en de intensiteit van met name zomerse buien kan toenemen. In steden zijn de gevolgen van de opwarming extra voelbaar, omdat de temperaturen er door het zogenoemde Urban Heat Island (UHI) effect veel hoger kunnen zijn dan in het omliggende gebied. Zulke periodes met hoge temperaturen gaan veelal gepaard met verslechterde luchtkwaliteit en droogte. Dit alles kan grote gevolgen hebben voor de leefbaarheid en de gezondheid van de bevolking in stedelijke gebieden. Veranderingen in de buienintensiteit beïnvloeden de waterhuishouding van de stad

    Self-limited oxide formation in Ni(111) oxidation

    Full text link
    The oxidation of the Ni(111) surface is studied experimentally with low energy electron microscopy and theoretically by calculating the electron reflectivity for realistic models of the NiO/Ni(111) surface with an ab-initio scattering theory. Oxygen exposure at 300 K under ultrahigh-vacuum conditions leads to the formation of a continuous NiO(111)-like film consisting of nanosized domains. At 750 K, we observe the formation of a nano-heterogeneous film composed primarily of NiO(111)-like surface oxide nuclei, which exhibit virtually the same energy-dependent reflectivity as in the case of 300 K and which are separated by oxygen-free Ni(111) terraces. The scattering theory explains the observed normal incidence reflectivity R(E) of both the clean and the oxidized Ni(111) surface. At low energies R(E) of the oxidized surface is determined by a forbidden gap in the k_parallel=0 projected energy spectrum of the bulk NiO crystal. However, for both low and high temperature oxidation a rapid decrease of the reflectivity in approaching zero kinetic energy is experimentally observed. This feature is shown to characterize the thickness of the oxide layer, suggesting an average oxide thickness of two NiO layers.Comment: 10 pages (in journal format), 9 figure

    Manifestation of quantum chaos on scattering techniques: application to low-energy and photo-electron diffraction intensities

    Full text link
    Intensities of LEED and PED are analyzed from a statistical point of view. The probability distribution is compared with a Porter-Thomas law, characteristic of a chaotic quantum system. The agreement obtained is understood in terms of analogies between simple models and Berry's conjecture for a typical wavefunction of a chaotic system. The consequences of this behaviour on surface structural analysis are qualitatively discussed by looking at the behaviour of standard correlation factors.Comment: 5 pages, 4 postscript figures, Latex, APS, http://www.icmm.csic.es/Pandres/pedro.ht

    Fermi's golden rule and exponential decay as a RG fixed point

    Full text link
    We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renormalization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.Comment: 20 pages, 1 figur
    corecore