369 research outputs found

    Limits of structure stability of simple liquids revealed by study of relative fluctuations

    Full text link
    We analyse the inverse reduced fluctuations (inverse ratio of relative volume fluctuation to its value in the hypothetical case where the substance acts an ideal gas for the same temperature-volume parameters) for simple liquids from experimental acoustic and thermophysical data along a coexistence line for both liquid and vapour phases. It has been determined that this quantity has a universal exponential character within the region close to the melting point. This behaviour satisfies the predictions of the mean-field (grand canonical ensemble) lattice fluid model and relates to the constant average structure of a fluid, i.e. redistribution of the free volume complementary to a number of vapour particles. The interconnection between experiment-based fluctuational parameters and self-diffusion characteristics is discussed. These results may suggest experimental methods for determination of self-diffusion and structural properties of real substances.Comment: 5 pages, 4 figure

    Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis

    Get PDF
    Nanobubbles in liquids are mysterious gaseous objects having exceptional stability. They promise a wide range of applications but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control production of bulk nanobubbles in space and time without generating larger bubbles. Using the schlieren technique a detailed three-dimensional structure of a dense cloud of nanobubbles above the electrodes is visualized. It is demonstrated that the thermal effects produce different schlieren pattern and have different dynamics. A localized volume enriched with nanobubbles can be separated from the parent cloud and exists on its own. This volume demonstrates buoyancy from which the concentration of nanobubbles is estimated as 2x10^18 m^-3. This concentration is smaller than that in the parent cloud. Dynamic light scattering shows that the average size of nanobubbles during the process is 60-80 nm. The bubbles are observed 15 minutes after switching off the electrical pulses but their size is shifted to larger values of about 250 nm. Thus, an efficient way to generate and control nanobubbles is proposed.Comment: 8 pages, 7 figures, Supplemental, 3 video file
    • …
    corecore