83 research outputs found

    Yang-Baxter equation for the asymmetric eight-vertex model

    Full text link
    In this note we study `a la Baxter [1] the possible integrable manifolds of the asymmetric eight-vertex model. As expected they occur when the Boltzmann weights are either symmetric or satisfy the free-fermion condition but our analysis clarify the reason both manifolds need to share a universal invariant. We also show that the free-fermion condition implies three distinct classes of integrable models.Comment: Latex, 12 pages, 1 figur

    Analysis of the current state of the Zapadno-Malobalykskoye oil field development (KHMAO-Yugra)

    Get PDF

    Mücrim

    Get PDF
    François Coppée'nin Servet-i Fünun'da yayımlanan Mücrim adlı romanının ilk ve son tefrikalar

    Charge and Current Sum Rules in Quantum Media Coupled to Radiation

    Full text link
    This paper concerns the equilibrium bulk charge and current density correlation functions in quantum media, conductors and dielectrics, fully coupled to the radiation (the retarded regime). A sequence of static and time-dependent sum rules, which fix the values of certain moments of the charge and current density correlation functions, is obtained by using Rytov's fluctuational electrodynamics. A technique is developed to extract the classical and purely quantum-mechanical parts of these sum rules. The sum rules are critically tested in the classical limit and on the jellium model. A comparison is made with microscopic approaches to systems of particles interacting through Coulomb forces only (the non-retarded regime). In contrast with microscopic results, the current-current correlation function is found to be integrable in space, in both classical and quantum regimes.Comment: 19 pages, 1 figur

    Diffusion in disordered systems under iterative measurement

    Full text link
    We consider a sequence of idealized measurements of time-separation Δt\Delta t onto a discrete one-dimensional disordered system. A connection with Markov chains is found. For a rapid sequence of measurements, a diffusive regime occurs and the diffusion coefficient DD is analytically calculated. In a general point of view, this result suggests the possibility to break the Anderson localization due to decoherence effects. Quantum Zeno effect emerges because the diffusion coefficient DD vanishes at the limit Δt0\Delta t \to 0.Comment: 8 pages, 0 figures, LATEX. accepted in Phys.Rev.

    Alternating Kinetics of Annihilating Random Walks Near a Free Interface

    Full text link
    The kinetics of annihilating random walks in one dimension, with the half-line x>0 initially filled, is investigated. The survival probability of the nth particle from the interface exhibits power-law decay, S_n(t)~t^{-alpha_n}, with alpha_n approximately equal to 0.225 for n=1 and all odd values of n; for all n even, a faster decay with alpha_n approximately equal to 0.865 is observed. From consideration of the eventual survival probability in a finite cluster of particles, the rigorous bound alpha_1<1/4 is derived, while a heuristic argument gives alpha_1 approximately equal to 3 sqrt{3}/8 = 0.2067.... Numerically, this latter value appears to be a stringent lower bound for alpha_1. The average position of the first particle moves to the right approximately as 1.7 t^{1/2}, with a relatively sharp and asymmetric probability distribution.Comment: 6 pages, RevTeX, 5 eps figures include

    The Clausius-Mossotti formula and its nonlocal generalization for a dielectric suspension of spherical inclusions

    Full text link
    Employing a recently developed cluster expansion for the effective dielectric constant of a suspension of spherical inclusions, we show which parts of the cluster integrals give rise to the Clausius-Mossotti formula. The same selection of terms is then used to obtain an approximate expression for the wave-vector-dependent effective dielectric tensor. For a system of hard spheres with only dipole polarizability this expression is evaluated in closed form. This last result is then used to derive the form of the electrostatic potential due to a point charge in the effective medium. For physically reasonable values of the polarizability, the potential has asymptotically the form corresponding to a medium with the Clausius-Mossotti dielectric constant, while at short range it oscillates about this form. For values of the polarizability beyond the physical range critical points are found at which the oscillations become long range.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45147/1/10955_2005_Article_BF01009796.pd

    Colored Vertex Models, Colored IRF Models and Invariants of Trivalent Colored Graphs

    Full text link
    We present formulas for the Clebsch-Gordan coefficients and the Racah coefficients for the root of unity representations (NN-dimensional representations with q2N=1q^{2N}=1) of Uq(sl(2))U_q(sl(2)). We discuss colored vertex models and colored IRF (Interaction Round a Face) models from the color representations of Uq(sl(2))U_q(sl(2)). We construct invariants of trivalent colored oriented framed graphs from color representations of Uq(sl(2))U_q(sl(2)).Comment: 39 pages, January 199

    Hydrodynamic Synchronisation of Model Microswimmers

    Full text link
    We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or pi, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.Comment: 17 pages, 8 figure

    Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study

    Get PDF
    We use lattice Boltzmann simulations, in conjunction with Ewald summation methods, to investigate the role of hydrodynamic interactions in colloidal suspensions of dipolar particles, such as ferrofluids. Our work addresses volume fractions ϕ\phi of up to 0.20 and dimensionless dipolar interaction parameters λ\lambda of up to 8. We compare quantitatively with Brownian dynamics simulations, in which many-body hydrodynamic interactions are absent. Monte Carlo data are also used to check the accuracy of static properties measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic interactions slow down both the long-time and the short-time decays of the intermediate scattering function S(q,t)S(q,t), for wavevectors close to the peak of the static structure factor S(q)S(q), by a factor of roughly two. The long-time slowing is diminished at high interaction strengths whereas the short-time slowing (quantified via the hydrodynamic factor H(q)H(q)) is less affected by the dipolar interactions, despite their strong effect on the pair distribution function arising from cluster formation. Cluster formation is also studied in transient data following a quench from λ=0\lambda = 0; hydrodynamic interactions slow the formation rate, again by a factor of roughly two
    corecore