26 research outputs found

    Anthropogenic Threats and Conservation Needs of Blue Whales, Balaenoptera musculus indica

    Get PDF
    Blue whales in the Northern Indian Ocean are a morphologically and acoustically distinct population restricted to these waters. Off Sri Lanka a portion of the population concentrates near shore where they are exposed to a range of anthropogenic threats. We review available data to determine anthropogenic threats/stressors faced by this population and assign subjective rankings for the population-level severity of each threat/stressor based on severity, scope, and immediacy. With the cessation of direct illegal catches on this population in the late 1960s, we ranked ship strike as the most important population-level threat. Incidental catch, which includes entanglement and bycatch, is also important as it can result in death. Other less important stressors that may negatively impact this population include threats resulting from oil and gas development and pollution. However, some stressors can have a long-term cumulative impact that is difficult to assess. The most important research needed for the conservation of these whales is to obtain an estimate of the size of the population using photo-identification methods

    Framework for assessing and mitigating the impacts of offshore wind energy development on marine birds

    Get PDF
    Offshore wind energy development (OWED) is rapidly expanding globally and has the potential to contribute significantly to renewable energy portfolios. However, development of infrastructure in the marine environment presents risks to wildlife. Marine birds in particular have life history traits that amplify population impacts from displacement and collision with offshore wind infrastructure. Here, we present a broadly applicable framework to assess and mitigate the impacts of OWED on marine birds. We outline existing techniques to quantify impact via monitoring and modeling (e.g., collision risk models, population viability analysis), and present a robust mitigation framework to avoid, minimize, or compensate for OWED impacts. Our framework addresses impacts within the context of multiple stressors across multiple wind energy developments. We also present technological and methodological approaches that can improve impact estimation and mitigation. We highlight compensatory mitigation as a tool that can be incorporated into regulatory frameworks to mitigate impacts that cannot be avoided or minimized via siting decisions or alterations to OWED infrastructure or operation. Our framework is intended as a globally-relevant approach for assessing and mitigating OWED impacts on marine birds that may be adapted to existing regulatory frameworks in regions with existing or planned OWED

    00029

    No full text
    Summary The >150 islands in north-western MĂ©xico are relatively pristine, but may easily be damaged by unregulated human use. Tourists visit many of these islands, but their numbers and impact are unknown. To examine some of the costs and benefits of ecotourism we sent a questionnaire to 42 ecotourism companies that visit islands in north-western MĂ©xico; 29 respondents reported that tourist days on these islands had increased at >7% yr -1 , from <15 000 in 1986 to about 47 000 in 1993. Neither government regulation nor cost of trips were reported to be important impediments to tourism growth. In 1993, ecotourist organizations visiting islands reported spending US$3.7 million, none of which went directly to the protection and management of the islands. We provide several management options to increase the conservation benefits of ecotourism and minimize the negative impacts

    Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated

    No full text
    It is widely recognized that trophic interactions structure ecological communities, but their effects are usually only demonstrated on a small scale. As a result, landscape-level documentations of trophic cascades that alter entire communities are scarce. Islands invaded by animals provide natural experiment opportunities both to measure general trophic effects across large spatial scales and to determine the trophic roles of invasive species within native ecosystems. Studies addressing the trophic interactions of invasive species most often focus on their direct effects. To investigate both the presence of a landscape-level trophic cascade and the direct and indirect effects of an invasive species, we examined the impacts of Norway rats (Rattus norvegicus) introduced to the Aleutian Islands on marine bird densities and marine rocky intertidal community structures through surveys conducted on invaded and rat-free islands throughout the entire 1,900-km archipelago. Densities of birds that forage in the intertidal were higher on islands without rats. Marine intertidal invertebrates were more abundant on islands with rats, whereas fleshy algal cover was reduced. Our results demonstrate that invasive rats directly reduce bird densities through predation and significantly affect invertebrate and marine algal abundance in the rocky intertidal indirectly via a cross-community trophic cascade, unexpectedly changing the intertidal community structure from an algae- to an invertebrate-dominated system

    The diet of feral cats on islands : a review and a call for more studies

    No full text
    Cats are among the most successful and damaging invaders on islands and a significant driver of extinction and endangerment. Better understanding of their ecology can improve effective management actions such as eradication. We reviewed 72 studies of insular feral cat diet from 40 islands worldwide. Cats fed on a wide range of species from large birds and medium sized mammals to small insects with at least 248 species consumed (27 mammals, 113 birds, 34 reptiles, 3 amphibians, 2 fish and 69 invertebrates). Three mammals, 29 birds and 3 reptiles recorded in the diet of cats are listed as threatened by the IUCN. However, a few species of introduced mammals were the most frequent prey, and on almost all islands mammals and birds contributed most of the daily food intake. Latitude was positively correlated with the predation of rabbits and negatively with the predation of reptiles and invertebrates. Distance from landmass was positively correlated with predation on birds and negatively correlated with the predation of reptiles. The broad range of taxa consumed by feral cats on islands suggests that they have the potential to impact almost any native species, even the smallest ones under several grams, that lack behavioral, morphological or life history adaptations to mammalian predators. Insular feral cat's reliance on introduced mammals, which evolved with cat predation, suggests that on many islands, populations of native species have already been reduced
    corecore