5,829 research outputs found
Limits on Neutron Lorentz Violation from the Stability of Primary Cosmic Ray Protons
Recent evidence appears to confirm that the ultra-high-energy primary cosmic
ray spectrum consists mostly of protons. The fact that these protons can
traverse large distances to reach Earth allows us to place bounds on Lorentz
violations. The protons neither emit vacuum Cerenkov radiation nor
-decay into neutrons, and this constrains six previously unmeasured
coefficients in the neutron sector at the 5 x 10^(-14) level. Among the
coefficients bounded here for the first time are those that control
spin-independent boost anisotropy for neutrons. This is a phenomenon which
could have existed (in light of the preexisting bounds) without additional fine
tuning. There are also similar bounds for others species of hadrons. The bounds
on Lorentz violation for neutral pions are particularly strong, at the 4 x
10^(-21) level, eleven orders of magnitude better than previous constraints.Comment: 13 pages, version to appear in Phys. Rev.
Intrinsic Pinning in the High Field C-Phase of UPt_3
We report on the a.c. magnetic response of superconducting UPt_3 in a d.c.
magnetic field. At low fields (H < H^*), the in-phase susceptibility shows a
sharp drop at followed by a gradual decrease with decreasing temperature,
while the out-of-phase component shows a large peak at T_c followed by an
unusual broad peak. As the B-C phase line is crossed (H>H^*), however, both the
in-phase and out-of-phase susceptibilities resemble the zero-field Meissner
curves. We interpret these results in terms of a vortex pinning force which,
while comparatively small in the A/B-phases, becomes large enough to
effectively prevent vortex motion in the C-phase.Comment: Modified discussion, slight changes to figures, accepted in PRB Rapid
Communications. RevTex file, 5 figure
Beaver Dam Influences on Streamflow Hydraulic Properties and Thermal Regimes
Beaver dams alter channel hydraulics which in turn change the geomorphic templates of streams. Variability in geomorphic units, the building blocks of stream systems, and water temperature, critical to stream ecological function, define habitat heterogeneity and availability. While prior research has shown the impact of beaver dams on stream hydraulics, geomorphic template, or temperature, the connections or feedbacks between these habitat measures are not well understood. This has left questions regarding relationships between temperature variability at different spatial scales to hydraulic properties such as flow depth and velocity that are dependent on the geomorphology. We combine detailed predicted hydraulic properties, field-based maps with an additional classification scheme of geomorphic units, and detailed water temperature observations throughout a study reach to demonstrate the relationship between these factors at different spatial scales (reach, beaver dam complexes, and geomorphic units). Over a three-week, low flow period we found temperature to vary 2 °C between the upstream and downstream extents of the reach with a net warming of 1 °C during the day and a net cooling of 0.5 °C at night. At the beaver dam complex scale, net warming of 1.15 °C occurred during the day with variable cooling at night. Regardless of limited temperature changes at these larger scales, the temperature variability within a beaver dam complex reached up to 10.5 °C due to the diversity of geomorphic units. At the geomorphic unit scale, the highly altered flow velocity and depth distributions within primary geomorphic units provide an explanation of the temperature variability within the dam complex and insight regarding increases in habitat heterogeneity
Model Atmospheres for Irradiated Stars in pre-Cataclysmic Variables
Model atmospheres have been computed for M dwarfs that are strongly
irradiated by nearby hot companions. A variety of primary and secondary
spectral types are explored in addition to models specific to four known
systems: GD 245, NN Ser, AA Dor, and UU Sge. This work demonstrates that a
dramatic temperature inversion is possible on at least one hemisphere of an
irradiated M dwarf and the emergent spectrum will be significantly different
from an isolated M dwarf or a black body flux distribution. For the first time,
synthetic spectra suitable for direct comparison to high-resolution
observations of irradiated M dwarfs in non-mass transferring post-common
envelope binaries are presented. The effects of departures from local
thermodynamic equilibrium on the Balmer line profiles are also discussed.Comment: Accepted for publication in ApJ; 12 pages, 10 figure
Mass Flux Calculations Show Strong Allochthonous Support of Freshwater Zooplankton Production Is Unlikely
Many studies have concluded terrestrial carbon inputs contribute 20–70% of the carbon supporting zooplankton and fish production in lakes. Conversely, it is also known that terrestrial carbon inputs are of very low nutritional quality and phytoplankton are strongly preferentially utilized by zooplankton. Because of its low quality, substantial terrestrial support of zooplankton production in lakes is only conceivable when terrigenous organic matter inputs are much larger than algal production. We conducted a quantitative analysis of terrestrial carbon mass influx and algal primary production estimates for oligo/mesotrophic lakes (i.e., TP≤20 µg L−1). In keeping with the principle of mass conservation, only the flux of terrestrial carbon retained within lakes can be utilized by zooplankton. Our field data compilation showed the median (inter-quartile range) terrestrial particulate organic carbon (t-POC), available dissolved organic carbon (t-DOC) inputs, and in-lake bacterial and algal production were 11 (8–17), 34 (11–78), 74 (37–165), and 253 (115–546) mg C m−2 d−1, respectively. Despite the widespread view that terrestrial inputs dominate the carbon flux of many lakes, our analysis indicates algal production is a factor 4–7 greater than the available flux of allochthonous basal resources in low productivity lakes. Lakes with high loading of t-DOC also have high hydraulic flushing rates. Because t-DOC is processed, i.e., mineralized or lost to the sediments, in lakes at ≈0.1% d−1, in systems with the highest t-DOC inputs (i.e., 1000 mg m−2 d−1) a median of 98% of the t-DOC flux is advected and therefore is not available to support zooplankton production. Further, advection is the primary fate of t-DOC in lakes with hydraulic retention times <3 years. When taking into account the availability and quality of terrestrial and autochthonous fluxes, this analysis indicates ≈95–99% of aquatic herbivore production is supported by in-lake primary production
Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology [post-print]
In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved
Revolutionising Fish Ageing: Using Near Infrared Spectroscopy to Age Fish
The project aimed to evaluate the innovative application of NIRS as a reliable, repeatable, and cost-effective method of ageing fish, using otoliths of Barramundi and Snapper as study species. Specific research questions included assessing how geographic and seasonal variation in otoliths affects NIRS predictive models of fish age, as well as how the NIR spectra of otoliths change in the short-term (i.e., <12 months) and long-term (i.e., historical otolith collections) and what effect this has on the predictive ability of NIRS models. The cost-effectiveness of using NIRS to supplement standard fish ageing methods was also evaluated using a hypothetical case study of Barramundi
3D characterization of diffusivities and its impact on mass flux and concentration overpotential in SOFC anodes
In recent years great effort has been taken to understand the effect of gas transport on the performance of electrochemical devices. This study aims to characterize the diffusion regimes and the possible inaccuracies of the mass transport calculation in Solid Oxide Fuel Cell (SOFC) anodes when a volume-averaged pore diameter is used. 3D pore size distribution is measured based on the extracted pore phase from an X-ray CT scan, which is further used for the calculation of a Knudsen number (Kn) map in the porous medium, followed by the voxel-based distribution of the effective diffusion coefficients for different fuel gases. Diffusion fluxes in a binary gas mixture using the lower boundary, upper boundary and average effective coefficients are compared, and the impact on overpotential is analyzed. The results show that pore diameters from tens to hundreds of nanometers result in a broad range of Knudsen number (1.1 ∼ 4.8 and 0.6 ∼ 3 for H2 and CH4 respectively), indicative of the transitional diffusion regime. The results highlight that for a porous material, such as an SOFC anode where Knudsen effects are non-negligible, using a volume-averaged pore size can overestimate the mass flux by ±200% compared to the actual value. The characteristic pore size should be chosen sensibly in order to improve the reliability of the mass transport and electrochemical performance evaluation
- …