2 research outputs found

    Sticky grains do not change the universality class of isotropic sandpiles

    Full text link
    We revisit the sandpile model with ``sticky'' grains introduced by Mohanty and Dhar [Phys. Rev. Lett. {\bf 89}, 104303 (2002)] whose scaling properties were claimed to be in the universality class of directed percolation for both isotropic and directed models. Simulations in the so-called fixed-energy ensemble show that this conclusion is not valid for isotropic sandpiles and that this model shares the same critical properties of other stochastic sandpiles, such as the Manna model. %as expected from the existence of an extra %conservation-law, absent in directed percolation. These results are strengthened by the analysis of the Langevin equations proposed by the same authors to account for this problem which we show to converge, upon coarse-graining, to the well-established set of Langevin equations for the Manna class. Therefore, the presence of a conservation law keeps isotropic sandpiles, with or without stickiness, away from the directed percolation class.Comment: 4 pages. 3 Figures. Subm. to PR

    Growing networks with local rules: preferential attachment, clustering hierarchy and degree correlations

    Full text link
    The linear preferential attachment hypothesis has been shown to be quite successful to explain the existence of networks with power-law degree distributions. It is then quite important to determine if this mechanism is the consequence of a general principle based on local rules. In this work it is claimed that an effective linear preferential attachment is the natural outcome of growing network models based on local rules. It is also shown that the local models offer an explanation to other properties like the clustering hierarchy and degree correlations recently observed in complex networks. These conclusions are based on both analytical and numerical results of different local rules, including some models already proposed in the literature.Comment: 17 pages, 14 figures (to appear in Phys. Rev E
    corecore