1,391 research outputs found
A Minority of Patients with Type 1 Diabetes Routinely Downloads and Retrospectively Reviews Device Data.
BackgroundIn type 1 diabetes (T1D), periodic review of blood glucose and insulin dosing should be performed, but it is not known how often patients review these data on their own. We describe the proportion of patients with T1D who routinely downloaded and reviewed their data at home.Materials and methodsA cross-sectional survey of 155 adults and 185 caregivers of children with T1D at a single academic institution was performed. "Routine Downloaders" (downloaded four or more times in the past year) were also considered "Routine Reviewers" if they reviewed their data most of the time they downloaded from devices. Logistic regression was used to identify factors associated with being a Routine Reviewer.ResultsOnly 31% of adults and 56% of caregivers reported ever downloading data from one or more devices, whereas 20% and 40%, respectively, were considered Routine Downloaders. Only 12% of adults and 27% of caregivers were Routine Reviewers. Mean hemoglobin A1c was lower in Routine Reviewers compared with non-Routine Reviewers (7.2±1.0% vs. 8.1±1.6% [P=0.03] in adults and 7.8±1.4% vs. 8.6±1.7% [P=0.001] in children). In adjusted analysis of adults, the odds ratio of being a Routine Reviewer of one or more devices for every 10-year increase in age was 1.5 (95% confidence interval, 1.1, 2.1 [P=0.02]). For every 10 years since diabetes diagnosis, the odds ratio of being a Routine Reviewer was 1.7 (95% confidence interval, 1.2, 2.4 [P=0.01]). For caregivers, there were no statistically significant factors associated with being a Routine Reviewer.ConclusionsA minority of T1D patients routinely downloads and reviews data from their devices on their own. Further research is needed to understand obstacles, provide better education and tools for self-review, and determine if patient self-review is associated with improved glycemic control
Recommended from our members
Development of an online-coupled MARGA upgrade for the 2 h interval quantification of low-molecular-weight organic acids in the gas and particle phases
A method is presented to quantify the lowmolecular- weight organic acids such as formic, acetic, propionic, butyric, pyruvic, glycolic, oxalic, malonic, succinic, malic, glutaric, and methanesulfonic acid in the atmospheric gas and particle phases, based on a combination of the Monitor for AeRosols and Gases in ambient Air (MARGA) and an additional ion chromatography (Compact IC) instrument. Therefore, every second hourly integrated MARGA gas and particle samples were collected and analyzed by the Compact IC, resulting in 12 values per day for each phase. A proper separation of the organic target acids was initially tackled by a laboratory IC optimization study, testing different separation columns, eluent compositions and eluent flow rates for both isocratic and gradient elution. Satisfactory resolution of all compounds was achieved using a gradient system with two coupled anion-exchange separation columns. Online pre-concentration with an enrichment factor of approximately 400 was achieved by solid-phase extraction consisting of a methacrylate-polymer-based sorbent with quaternary ammonium groups. The limits of detection of the method range between 0.5 ngm3 for malonate and 17.4 ngm3 for glutarate. Precisions are below 1.0 %, except for glycolate (2.9 %) and succinate (1.0 %). Comparisons of inorganic anions measured at the TROPOS research site in Melpitz, Germany, by the original MARGA and the additional Compact IC are in agreement with each other (R2 D0.95-0.99). Organic acid concentrations from May 2017 as an example period are presented. Monocarboxylic acids were dominant in the gas phase with mean concentrations of 306 ngm3 for acetic acid, followed by formic (199 ngm3), propionic (83 ngm3), pyruvic (76 ngm3), butyric (34 ngm3) and glycolic acid (32 ngm3). Particulate glycolate, oxalate and methanesulfonate were quantified with mean concentrations of 26, 31 and 30 ngm3, respectively. Elevated concentrations of gas-phase formic acid and particulate oxalate in the late afternoon indicate photochemical formation as a source
Enantioselective Total Synthesis and Assignment of the Absolute Configuration of the Furo[3,2- a]carbazole Alkaloid Furoclausine-B
© Copyright 2018 American Chemical Society. We describe the first enantioselective total synthesis and the assignment of the absolute configuration of the furo[3,2-a]carbazole alkaloid furoclausine-B. As key steps for our approach we used a palladium(II)-catalyzed double C-H-bond activation for the construction of the carbazole framework, a Shi epoxidation, and an intramolecular opening of the epoxide for annulation of the dihydrofuran moiety
Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany – A five-year study
An hourly quantification of inorganic water-soluble PM10 ions and corresponding trace gases was performed using the Monitor for AeRosols and Gases in ambient Air (MARGA) at the TROPOS research site in Melpitz, Germany. The data availability amounts to over 80% for the five-year measurement period from 2010 to 2014. Comparisons were performed for the evaluation of the MARGA, resulting in coefficients of determinations (slopes) of 0.91 (0.90) for the measurements against the SO2 gas monitor, 0.84 (0.88), 0.79 (1.39), 0.85 (1.20) for the ACSM NO3 −, SO4 2− and NH4 + measurements, respectively, and 0.85 (0.65), 0.88 (0.68), 0.91 (0.83), 0.86 (0.82) for the filter measurements of Cl−, NO3 −, SO4 2− and NH4 +, respectively. A HONO comparison with a batch denuder shows large scatter (R2 = 0.41). The MARGA HNO3 is underestimated compared to a batch and coated denuder with shorter inlets (slopes of 0.16 and 0.08, respectively). Less NH3 was observed in coated denuders for high ambient concentrations. Long-time measurements show clear daily and seasonal variabilities. Potential Source Contribution Function (PSCF) analysis indicates the emission area of particulate ions Cl−, NO3 −, SO4 2−, NH4 +, K+ and gaseous SO2 to lie in eastern European countries, predominantly in wintertime. Coarse mode sea salt particles are transported from the North Sea to Melpitz. The particles at Melpitz are nearly neutralised with a mean molar ratio of 0.90 for the five-year study. A slight increase of the neutralization ratio over the last three years indicates a stronger decrease of the anthropogenically emitted NO3 − and SO4 2− compared to NH4 +
- …