309 research outputs found

    An Open Inflationary Model for Dimensional Reduction and its Effects on the Observable Parameters of the Universe

    Full text link
    Assuming that higher dimensions existed in the early stages of the universe where the evolution was inflationary, we construct an open, singularity-free, spatially homogeneous and isotropic cosmological model to study the effects of dimensional reduction that may have taken place during the early stages of the universe. We consider dimensional reduction to take place in a stepwise manner and interpret each step as a phase transition. By imposing suitable boundary conditions we trace their effects on the present day parameters of the universe.Comment: 5 pages, accepted for publication in Int. J. of Mod. Phys.

    On the Consistency of the Solutions of the Space Fractional Schr\"odinger Equation

    Get PDF
    Recently it was pointed out that the solutions found in literature for the space fractional Schr\"odinger equation in a piecewise manner are wrong, except the case with the delta potential. We reanalyze this problem and show that an exact and a proper treatment of the relevant integral proves otherwise. We also discuss effective potential approach and present a free particle solution for the space and time fractional Schr\"odinger equation in general coordinates in terms of Fox's H-functions

    Multiscale systematic risk

    Get PDF
    In this paper we propose a new approach to estimating systematic risk (the beta of an asset). The proposed method is based on a wavelet multiscaling approach that decomposes a given time series on a scale-by-scale basis. The empirical results from different economies show that the relationship between the return of a portfolio and its beta becomes stronger as the wavelet scale increases. Therefore, the predictions of the CAPM model should be investigated considering the multiscale nature of risk and return. © 2004 Elsevier Ltd. All rights reserved

    Scaling properties of foreign exchange volatility

    Get PDF
    In this paper, we investigate the scaling properties of foreign exchange volatility. Our methodology is based on a wavelet multi-scaling approach which decomposes the variance of a time series and the covariance between two time series on a scale by scale basis through the application of a discrete wavelet transformation. It is shown that foreign exchange rate volatilities follow different scaling laws at different horizons. Particularly, there is a smaller degree of persistence in intra-day volatility as compared to volatility at one day and higher scales. Therefore, a common practice in the risk management industry to convert risk measures calculated at shorter horizons into longer horizons through a global scaling parameter may not be appropriate. This paper also demonstrates that correlation between the foreign exchange volatilities is the lowest at the intra-day scales but exhibits a gradual increase up to a daily scale. The correlation coefficient stabilizes at scales one day and higher. Therefore, the benefit of currency diversification is the greatest at the intra-day scales and diminishes gradually at higher scales (lower frequencies). The wavelet cross-correlation analysis also indicates that the association between two volatilities is stronger at lower frequencies

    Right-triangular subdivision for texture mapping ray-traced objects

    Get PDF
    The introduction of global illumination and texture mapping enabled the generation of high-quality, realistic looking images of computer graphics models. We describe a fast and efficient 2D texture mapping algorithm that uses triangle-to-triangle mapping, taking advantage of mapping an arbitrary triangle to a right triangle. This requires fewer floating point operations for finding the 2D texture coordinates and little preprocessing and storage. Texture mapping is combined with ray tracing for better visual effects. A filtering technique alternative to area sampling is developed to avoid aliasing artifacts. This technique uses linear eye rays, and only one eye ray per pixel is fired. A uniform supersampling filtering technique eliminates aliasing artifacts at the object edges

    Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium

    Get PDF
    Ongoing climate change is expected to cause an increase in temperature and a reduction of precipitation levels in the Mediterranean region, which might cause changes in many species distributions. These effects negatively influence species gene pools, decreasing genetic variability and adaptive potential. Here, we use mitochondrial DNA and RADseq to analyse population genetic structure and genetic diversity of the bumblebee species Bombus terrestris (subspecies Bombus terrestris lusitanicus), in the Iberian Peninsula. Although this subspecies shows a panmictic pattern of population structure across Iberia and beyond, we found differentiation between subspecies B. t. lusitanicus and B. t. africanus, probably caused by the existence of barriers to gene flow between Iberia and North Africa. Furthermore, the results revealed that the Iberian Peninsula harbours a large fraction of B. terrestris intraspecific genetic variation, with the highest number of mitochondrial haplotypes found when compared with any other region in Europe studied so far, suggesting a potential role for the Iberian Peninsula as a glacial refugium. Our findings strengthen the idea that Iberia is a very important source of diversity for the global genetic pool of this species, because rare alleles might play a role in population resilience against human- or climate-mediated changes.info:eu-repo/semantics/publishedVersio

    Compartmentalization of androgen receptors at endogenous genes in living cells

    Get PDF
    A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.</p

    Compartmentalization of androgen receptors at endogenous genes in living cells

    Get PDF
    A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.</p
    corecore